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Abstract: Malaria is a major global health problem. About 3.5 billion people are at risk of infection of malaria worldwide, 

with environmental factors contributing for about 70–90% of the disease-risk. Over one million cases of malaria are 

reported each year, out of which more than 80% is from the sub-Saharan Africa. Ethiopia is a predominantly malaria-

prone country as about 75% of the landscape of the country is favorable for breeding of the malaria vector. Geographical 

Information System has emerged as a spatial technology, which integrates a wide range of datasets available from 

different sources including remote sensing and Global Positioning System. During the present study, a malaria-risk map 

of Mecha district of Ethiopia was prepared by establishing the relationship of various climatic and non-climatic factors 

related to the disease using regression analysis. Weighted overlay technique of multi-criteria evaluation was used to 

develop the malaria-risk map. Temperature, rainfall, altitude, distance from streams, distance from swamps and ponds, 

population density, health facilities and land-use/land-cover patterns were used to prepare malaria-risk areas. Malaria 

hazard, elements of risk and vulnerability layer were overlaid, and further verified by ground truth and village-wise 

reports of malaria cases to produce the final malaria-risk map. Four categories of malaria-risk ranging from very high to 

low were derived. Most of the study area (99.01%) was found to belong to high and moderate malaria-risk. It is suggested 

that effective identification and mapping of malaria-risk levels can be made using geospatial tools, to contribute for the 

prevention and control of this disease. 
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1. Introduction 

 

Malaria is a major health problem as it affects all age 

groups of the people in most parts of the world even for 

about 70–90% of the disease risk (Bautista et al., 2006; 

Erin et al., 2014). Around 300−500 million cases and 

more than two million deaths of malaria are reported 

each year, with more than 80% of these from the sub-

Saharan Africa (Abdulhakim, 2013). Malaria is 

essentially an environmental disease, as the vectors 

require specific habitats with surface water for 

reproduction and humidity for adult mosquitoes to 

survive. The development rate of both the vector and the 

malaria parasite are influenced by temperature 

(Ashenafi, 2003). Approximately 4–5 million cases of 

malaria are reported annually in Ethiopia and malaria is 

prevalent in 75% of the extent of the country, putting 

over 50 million people at risk (Abdulhakim, 2013). 

 

Integrated use of remote sensing (RS) and Geographical 

Information System (GIS) has been successfully 

demonstrated in many studies related to mapping of 

malaria-risk in different parts of Africa (Hay et al., 

2000; Kleinschmidt et al., 2001; Sithiprasasna et al., 

2005; Dongus et al., 2007). The severity of malaria is a 

function of the interactions between Plasmodium, the 

parasite; the Anopheles mosquito, the vector; the human 

host and the environment. Vector abundance combined 

with the probability of the vector feeding of susceptible 

human-host determines the risk of malaria infection, 

which is more prevalent in the tropics. It is a serious 

vector-borne disease. About 3.5 billion people are at 

risk of infection of malaria worldwide with 

environmental factors contributing for the disease 

transmission, and its seasonal patterns.  

 

There are several factors associated with this disease 

and its control, such as water bodies, rainfall, 

temperature, population, land-use/land-cover and health 

facilities (Palaniyandi, 2012). Understanding the causal 

factors is a prerequisite to design and implement 

appropriate malaria-risk management. So as to mitigate 

the effect of this risk, effective malaria-risk 

management methods are required. Spatial information 

on malaria distribution helps to prioritize control 

measures. 

 

2. The study area and methods 
 

Mecha district lies within 11o 8'−11o39' N latitude and 

36o59' 51"−37o 20' E longitude covering a total area of 

149,119 km2 (Figure 1), located in the West Gojjam 

Zone in the Amhara region, about 35 km from Bahir 

Dar, the capital town of Amhara Regional State of 

Ethiopia. There are 44 villages including three town 

administrative villages in the study area. Mecha district 

is situated at an altitude range of 1720 m−2800 m above 

sea level. The area is characterized by flat lying 

topography with some hilly terrain. This district has 

different climatic variables in different seasons. The 

annual rainfall pattern of the study area varies from 

1000 to 2000 mm. The temperature varies from 23oC to 

27oC. June, July and August are high rainfall months 

and December, January and February are low rainfall 
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months. High temperature is recorded in March, April 

and May and low temperature is recorded in November, 

December and January. 

 

2.1 Methodology 

To develop the malaria-risk map of the study area, 

identification and selection of the major factors 

contributing for malaria breeding such as land-use/land-

cover, water bodies, population, elevation, temperature, 

rainfall, ponds and swamps, slope and health station 

facilities were done. Regression analysis was applied to 

identify the statistical correlations between malaria 

cases and the above parameters. The mathematical 

formula applied to the explanatory variables in order to 

best predict the dependent variable was the following: 

 

𝑌 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 … . + 𝛽𝑛𝑥𝑛 + 𝜀                (1)               

 

where, yis dependent variable, x1, x2, …, xn are 

independent variables, β0, β1, β2… βn are coefficients 

and ε is error term (residual). 

 

In this study, global weighted regression (GWR) and 

ordinary least squares regression (OLS) were carried out 

to assess the spatial relationship between the parameters 

and malaria cases and to validate the model 

performance. To assess spatial model performance, 

values of R-squared, adjusted R-squared, Jarque-Bera 

p-value (JB), Akaike Information Criterion (AIC) and 

Variance Inflation Factor (VIF) were computed (Ehlkes 

et al., 2014). Independent variables greater than 7.5 VIF 

(strong multi-collinearity) were cut off to overlay. The 

dependent variable was malaria cases and the 

independent variables were temperature, rainfall, 

LU/LC, population density, slope, elevation, distance 

from swamps and ponds and distance from streams. 

Elevation variable (8.7) and slope variable (10.7) in the 

regression model are associated with large VIF values. 

To show the spatial clustering of the values associated 

with the geographic features in the study area, Moran’s 

I. was also computed. 

 

2.1.1 Moran's I: This is a tool to measure spatial 

autocorrelation based on both feature locations and 

feature values simultaneously. It evaluates whether the 

pattern expressed is clustered, dispersed or random 

(Oliveira et al., 2013). The Moran’s index statistic for 

spatial autocorrelation is given as: 

 

𝐼 =
𝒏

𝑺𝒐

∑ ∑ 𝒘ĳ𝒁і𝒁ј𝒏
ј=𝟏

𝒏
і=𝟏

∑ 𝒁і²𝒏
і=𝟏

                            (2) 

 
where, Zі = the deviation of an attribute for feature і 

from its mean 

Wĳ= the spatial weight between і and j,   

n= total number of features and  

So= the aggregates of all the spatial weights. 

 

2.1.2 Image processing: To produce land-use/land-

cover map of the study area, Landsat TM image of 

path 170 and row 052 of January 2015 was acquired.

 

 
Figure 1: Location map of the study area Mecha District, Ethiopia 
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Figure 2: Malaria-risk flowchart 

 

Image processing starting from image pre-processing 

(geometric and radiometric correction), layer stacking 

(band 2–7), image enhancement and image 

classification to the final accuracy assessment were 

done in ERDAS Imagine software. To correct the 

satellite image radiometrically, Operational Land 

Imager (OLI) band data were converted to top of 

atmosphere (TOA) to a planetary reflectance using 

reflectance rescaling coefficients provided in the 

product metadata file. The following equation was used 

to convert DN values to TOA reflectance: 

 

𝜌𝜆′ = 𝑀𝜌𝑄𝑐𝑎𝑙 + 𝐴𝜌                                                 (3) 

 

The ρλ' does not contain the sun angle correction and 

hence the image was again converted to TOA 

reflectance with a correction for the sun angle as 

follows: 

 

𝜌𝜆 =
𝜌𝜆′

𝑐𝑜𝑠(𝜃𝑠𝑧)
=

𝜌𝜆′

𝑠𝑖𝑛(𝜃Ѕ𝐸)    
                                         (4) 

 

After preparing the factors and validating the model and 

image processing, three malaria-risk layers were 

generated using their factors. The malaria-risk map was 

developed by combining the suitability of 

environmental conditions for malaria transmission 

based on climatic and non-climatic factors. All factor 

parameters compatible to hazard analysis were 

generated before weighted overlay. Hazard map was 

produced by computing and reclassifying the five 

parameters viz. meteorological (rainfall and 

temperature) data, distance from ponds and swamps, 

altitude and distance from streams layers. Each of the 

hazard parameters was ranked according to the 

importance for mosquito breeding and transmission. 

The process of weighting each factor was performed in 

IDRISI software. After assigning weight, the hazard 

map was computed by overlaying the five selected 

factors. 

 

Vulnerability map was generated from distance from 

health facility map and population density map. The two 

layers were overlaid with 54% weight to population 

density map and 46% to health facility map. The weight 

was given by consulting health experts, who have 

advanced knowledge about malaria based on the 

regression result coefficients and available information. 

The element at the risk-map was computed by 

reclassifying the land-use/land-cover pattern of the 

study area. The land-use/land-cover types were ranked 

Weighted overlay 

Landsat TM 2015 
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Population 

Population 

density 

Reclassify 

Vulnerability map 

Image processing 
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Health 
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based on the importance from the most important to 

least important, and vulnerability map was developed 

by reclassifying land-use/land-cover types of the study 

area. In this study, malaria-risk was expressed as the 

product of malaria hazard map, vulnerability map and 

element at risk-map using Shook model. To produce the 

malaria-risk map, the influence factors were assigned 

for the three components of malaria-risk layers (malaria 

hazard, element at risk and vulnerability layer) and 

overlaid.  

                                

  R=V×H×E                                                     (5) 

 

where; R=Malaria risk map; H= malaria hazard map; 

V= vulnerability map; E= malaria element risk map. 

 

The methodological flowchart is presented in Figure 2. 

 

3. Results  

 

3.1 Malaria vs rainfall 

Figure 3 shows the average rainfall and average malaria 

cases recorded in the study area during 2002–2012. 

Rainfall was the main climatic factor for the prevalence 

of malaria in the study area with 44% influence (Tables 

1 and 2). The average rainfall of the study area varies 

from the lowest 2.056 mm to the highest 418.97 mm per 

month. Maximum rainfall was recorded during 

June−August and the minimum during 

December−February. A higher number of malaria cases 

was recorded during May−June and 

October−November, and lower in the months of August, 

March and April. There was a positive relationship 

between malaria cases and rainfall in the months 

December to February and May to July, but the 

relationship was negative in the months of August to 

November. 

 

3.2 Malaria vs temperature  
The present study has revealed that temperature also has 

influence in prevailing malaria. There was a negative 

relationship during the months of December−April, 

when the study area had lower number of recorded 

malaria cases, and in August when higher number of 

cases were registered. Although temperature favours 

Plasmodium development, lack of water prevents 

breeding and development of the vector. Figure 4 shows 

the relationship between monthly malaria incidence 

recorded during 2002−2012 with the data on monthly 

temperature variations in the study area. 

 

 
 

Figure 3: Malaria vs rainfall relationship in the 

study area during 2002−2012 

 

 
 

Figure 4: Malaria vs temperature relationship in the 

study area (2002−2012) 

 

Table 1: Malaria cases and rainfall and temperature in Mecha district (2002–2012) 

 
Months July Aug. Sep. Oct. Nov. Dec. Jan. Feb. Mar. Apr. May June 

Malaria case 39164 2770 3638 4760 5705 4487 3313 3162 2909 3070 7188 7683 

Rainfall 418.9 388.3 238.2 100.3 35.4 10.4 2.9 2.06 29.7 60.9 175.6 358.5 

Temperature 20.07 20.5 20.78 19.72 15.52 17.45 18.94 19.89 22.5 23.78 22.76 20.69 

3.3 Regression analysis for model validation  

As shown in Table 2, rainfall, temperature and 

population density have strong positive relationship and 

altitude and slope have strong negative relationship with 

malaria incidence. These are the main factors for 

malaria prevalence in the study area relative to other 

factors analysed (Tables 2 and 3). The AIC, multiple R2 

and adjusted R2 for this model were 657.72329, 0.8052 

and 0.7566, respectively. Multiple R-squared and 

adjusted R-squared were both statistics derived from the 

regression equation to quantify model performance. In 

this model, R2 was 80.5299%. Hence, 80.53% variation 

in the dependent variable (malaria cases) could be 

explained by the model. 
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Table 2: Result of regression analysis 

Variable Coefficient T-stat Probability Robust-t Robust-p R2 (%) VIF 

Intercept -75035357 -4.74 0.000041* -7.994938 0.000000*   

Pop. density +69.1356 4.037 0.000319* 6.851215 0.000000* 85.54 2.0 

Health station Distance  -0.031 -4.051 0.007826* -1.130710 0.000000* 19.6 1.7 

Slope -11.04497 -0.12 0.897635 -0.191535 0.849318 16.68 10.7 

Temperature +115.4472 0.52 0.526501 0.615132 0.542817 51.04 2.4 

Rainfall +752.86 4.76 0.000039* 7.638637 0.000000* 64.02 1.9 

Elevation -114.44 -2.06 0.488905 -0.848799 0.402299 17.04 8.7 

Distance from swamps -0.04183 -4.85 0.009351* -0.746534 0.000014* 59.00 2.2 

Distance from streams -0.08 -0.58 0.56 -0.77 0.44 12.71 1.4 

* indicates a statistically significant p-value (p < 0.01). 

 

Coefficients are values that represent the strength and 

type of relationship the explanatory variable has to the 

dependent variable. When the relationship is positive, 

the sign for the associated coefficient is also positive (+) 

and negative relationships have negative (−) signs. 

When the relationship is strong, the coefficient is large 

such as rainfall, temperature, altitude, elevation and 

population density. Weak relationships are associated 

with coefficients near (zero) such as distance from 

swamps and ponds and distance from streams. 

Regression analysis computed a p-value for the 

coefficients associated with each independent variable. 

P-value was used to reject the null hypothesis for 

statistical test that states for all purposes, the coefficient 

is zero and the associated explanatory variable is not 

useful for the model.  

 

The regression analysis revealed small p-values. Hence, 

the explanatory variables were important to the model 

with a value different from zero (the coefficient was not 

zero). Table 3 shows that some of the variables are both 

negative and positive. The explanatory variable that 

showed negative and positive significance were slope, 

distance from streams, distance from swamps and 

temperature. This indicates that these variables were not 

statistically significant (P>0.01). However, population 

density, distance from health stations, rainfall and 

distance from swamps and ponds were significant 

(P<0.01). 

 

Table 3: Results of explanatory regression analysis 

Variables Variable significance 

(%) 

Negative Positive 

Population density 0.00 100 

Slope  75.44 24.56 

Altitude 85.44 14.56 

Distance health stations  100 0.00 

Distance from streams 60.18 39.82 

Distance from swamps & 

ponds 

100 0.00 

Rainfall 0.00 100 

Temperature 21.58 78.42 

 

In the present model, p-value was small (0.000015), and 

hence the null hypothesis was rejected. There was 

spatial autocorrelation between the values associated 

with the geographic features in the study area. Moran’s 

index value was 0.357501, and hence spatial features 

and their associated data values tended to be clustered 

(positive spatial autocorrelation) as it was greater than 

0. The tool returns a Z score of 3.429816, which 

indicated that standard deviations were away from the 

mean. 

 

 
 

Figure 5: Malaria hazard map of the study area 

 

3.4 Areas of malaria hazard 

Rainfall, altitude, streams, temperature, swamps and 

ponds were the predictors of presence of malaria with 

percentage influence of 44%, 38%, 4%, 7% and 7%, 

respectively.  Rainfall and altitude were the dominant 

factors for the existence of malaria as a hazard as 

compared with other selected factors, and streams 

showed the least percentage influence (Principal 

Eigenvector) for malaria prevalence. The consistency 

ratio for the Eigenvector of weights was within an 

acceptable range with the value 0.02. Table 4 shows the 

weight, rank and degree of vulnerability of the selected 

parameters of malaria hazard in the study area. Figure 5 

shows the malaria hazard-risk map of the study area, 

which shows the level of malaria vulnerability in an 

extent of 46.77 km (0.31%) as very high, 64504.51 km2 

(43.25%) high, 76446.74 km2 (51.26%) moderate and 

8122.58 km2 (5.44%) low. Thus, most of the study area 

is subjected to high and moderate malaria hazard-risk. 

 

3.5 Malaria vulnerability 

Figure 6 shows that in an extent of 1878.04 km2 (1.26%) 

was moderately vulnerable for malaria 39794.21 km2 
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(26.68%) was vulnerable for malaria at low level and 

107446.73 km2 (72%) was vulnerable for malaria at 

very low level.  Thus, the majority of the study area is 

under very low malaria-risk. 

 

 
 

Figure 6: Malaria vulnerability 

 

3.6 Element at risk map of malaria 

The results of NDVI values ranged between -0.266708–

0.569553. The lowest (negative) NDVI values indicate 

the water bodies. The highest NDVI values indicate 

plantation and bush lands. Table 5 shows the results of 

NDVI value for each of the LU/LC types of the area. 

Figure 7 illustrates that 48523.66 km2 (32.54%) had 

very high, 21365.29 km2 (14.32%) had high, 75556.48 

km2 (50.66%) had moderate and 3673.56 km2 (2.46%) 

had low level of malaria vulnerability.  

 

3.7 Identifying malaria-risk areas 

As shown in Table 6, element at risk and malaria 

vulnerability had 63%, 31% and 6% of weight influence 

of hazard element at risk and vulnerability for the 

existence of malaria in the study area.  Malaria hazard 

layer was the dominant factor for the final malaria-risk 

map. There was no area, which was free from malaria-

risk. In the study district, 33.59 km2 (0.23%) area was 

of very high, 69305.82 km2 (46.47%) was high, 

76830.96 km2 (51.52%) was moderate and 2948.61 km2 

(1.97%) was of low malaria-risk. The majority of the 

study area was subject to high and moderate risk of 

malaria. The final malaria-risk model map has revealed 

that all parameters, analysed during the study had 

different weight influence for the prevalence of malaria 

in the Mecha district of Ethiopia. However, rainfall was 

the most dominant factor for the prevalence of malaria 

in the present study area, where as altitude had limiting 

effect for the prevalence of the disease as altitude has 

negative correlation with temperature. The total area 

and degree of vulnerability for malaria prevalence in the 

final malaria-risk map and its layers (malaria hazard 

map, element at risk map and vulnerability map) are 

presented in Table 7. 

 

 

Table 4: Characteristic of factors in relation to 

malaria hazard area identification 

Factors Weight Class Rank Degree of 

vulnerability 

Rainfall 44 98–100 mm 

100–103 mm 

103–105 mm 

105–108 mm 

>108 mm 

5 

4 

3 

2 

1 

Very low 

Low 

Moderate 

High 

Very high 

Altitude 38 <2000 m 

2000–2200 m 

2200–2400 m 

2400–2600 m 

>2600 m 

1 

2 

3 

4 

5 

Very high 

High 

Moderate  

Low 

Very low 

Distance 

from 

Swamps 

and 

ponds 

7 0–500 m 

500–2000 m 

2000–3500 m 

3500–5000 m 

>5000 m 

1 

2 

3 

4 

5 

Very high 

High 

Moderate  

Low 

Very low 

Distance 

from 

Streams 

4 0–500 m 

500–2000 m 

2000–3500 m 

3500–5000 m 

>5000 m 

1 

2 

3 

4 

5 

Very high 

High 

Moderate  

Low 

Very low 

Temperat

ure 

7 <15oC 

15–17oC 

17–19oC 

19–21oC 

>21oC 

5 

4 

3 

2 

1 

Very low 

Low 

Moderate 

High 

Very high 

 

Table 5: NDVI values for each land-use/land-cover 

types 

Land-use/land-cover 

types 

NDVI 

values 

Irrigation 0.143 

Water bodies -0.075 

Farmland 0.144 

Plantation 0.245 

Grassland 0.178 

Bareland 0.148 

Wetlands 0.103 

Settlement 0.114 

Bush and shrublands 0.188 

 

3.8 Malaria risk levels of villages in Mecha district  

All villages in the study area fall within the risk of 

malaria prevalence. One of the villages (Merawi town) 

fall in the very high malaria-risk area and the other 

villages are in the high to low levels of malaria-risk. 

Figure 8 shows the villages in the study area showing 

the levels of malaria-risk. 
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Figure 7: Element at risk map of malaria 

 

Table 6: Characteristic of factors in relation to 

malaria risk area identification 

 

Table 7: Summary of the results for malaria-risk 

and its layers 

 

Type of 

area 

Area 

(km2) 

Area 

(%) 

Degree of 

Vulnerability 

Malaria  

hazard map 

46.77 0.31 Very high 

64504.51 43.25 High 

76446.74 51.26 Moderate 

8122.58 5.44 Low 

Vulnerability  

map 

1878.04 1.26 Moderate 

39794.21 26.68 Low 

107446.73 72 very Low 

Element at  

risk map 

48523.66 32.54 Very high 

21365.29 14.32 High 

75556.48 50.66 Moderate 

3673.56 2.46 Low 

Final 

Malaria 

risk map 

33.59 0.225 Very high 

69305.82 46.47 High 

76830.96 51.52 Moderate 

2948.61 1.97 Low 

 

 

 
 

Figure 8: Malaria-risk map showing the status of 

villages in the study area 

 

4. Discussion 

 

The importance of GIS techniques is recognized in areas 

of disease prevalence and treatment (Carlos et al., 

2010). The GIS-based malaria incidence mapping has 

been used for risk assessment at national, regional, and 

local levels in the context of resource allocation, 

management and to combat the disease (Saxena et al., 

2009). Probability of the transmission of malaria to the 

present study area was determined by climatic, non-

climatic and biological factors.  

 

Areas near water bodies showed a low prevalence of 

malaria. There is no stagnation of water in the river. 

When there is heavy rain fall, mosquitoes cannot 

develop when the river flows fast in the absence of 

stagnant water bodies.  However, in some areas, ponds 

are created close to the streams and rivers in order to 

store water for the dry season. Such ponds act as 

resourceful areas for mosquitoes to develop and 

contribute to increase malaria prevalence (Bautista et 

al., 2006).  A negative association between distance 

from swampy areas and malaria-risk exists in the study 

area. It is already revealed that a strong positive 

association exists between malaria incidence and water 

bodies (Yihenew, 2007; Aster, 2010; Abdulhakim, 

2013). 

 

Higher elevation in general has long been recognized to 

be negatively associated with malaria due to its 

association with cooler temperatures that slows the 

development of anopheline vectors and the Plasmodium 

parasites they transmit (Patz et al., 2003). Malaria 

prevalence decreases with increase in altitude, 

particularly above 2000 m (Patz et al., 2003; Bautista et 

al., 2006). The present study shows higher negative 

Factors Weight Rank Degree of 

Vulnerability 

Hazard map 63 1 

2 

3 

4 

Very high 

High 

Moderate  

Low 

Element at 

risk map 

31 1 

2 

2 

4 

Very high 

High 

Moderate  

Low 

Vulnerability 

map 

6 2 

3 

4 

 Moderate  

Low 

Very low 
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correlation between monthly incidence of malaria and 

altitude (Yihenew, 2007; Yazoume et al., 2008).  

 

Rainfall results in an increase in the prevalence of 

malaria as rains provide good breeding sites for the 

mosquito vectors (Stephen, 2006; Omukunda et al., 

2013). The correlation coefficient for the association 

between monthly rainfall and monthly incidence of 

malaria was found greater than that for the association 

between other variables assessed. A rise in temperature 

enhances the survival chances of Anopheles mosquitoes 

and the Plasmodium and thus accelerates the 

transmission dynamics of malaria. There was a negative 

relationship between malaria and temperature during 

the months January to April and in August, when the 

study area had the minimum and maximum 

temperatures, respectively. Hence, an increase in 

temperatures does not mean an increase in the malaria 

transmission risk if this is accompanied by a decrease in 

rainfall. Although temperature favors Plasmodium to 

develop, lack of water prevents development of the 

vector. 

 

The habitats of mosquitoes differ according to the 

vegetation and the nature of local environment. Land-

use/land-cover types with plantation and bush lands 

have strong association with malaria indicating that this 

LU/LC may be a proxy for predictors of elevated 

malaria-risk (Richard and Poccard, 1998; Yasuoka and 

Levins, 2007; Ehlkes et al., 2014). The relationship of 

NDVI to Entomological Inoculation Rate (EIR) is 

highly correlated. The lower the NDVI value indicates 

the lower the vegetation level and the area is thought to 

be dry (Ceccato et al., 2005). The present results show 

high correlation between the incidence of malaria and 

vegetation due to the prevalence of high NDVI value as 

reported earlier (Oliveira et al., 2013; Ehlkes et al., 

2014; Solomon et al., 2015).  

 

In areas with low slopes, water tends to be logged, and 

such conditions accelerate chances for water stagnation.  

Absence of proper water drainage may lead to the 

creation of stagnant water pools, which in turn, 

encourages breeding and survival of mosquitoes 

(Thomson et al., 1999). The present study shows that 

slope gradient has negative influence on malaria 

incidence. This relationship could be attributed to the 

different slope types found on different geographic 

locations across the studied landscapes. The bottom 

areas characterized by flat or gentle slopes are mostly 

under swamps and water bodies. As slope increases 

from lower parts to middle and upper slopes, mosquito 

populations cannot sustain.  

 

Presence of health institutions in a particular area is very 

important for treatment of patients, awareness creation 

and to implement preventive measures (Meron, 2010). 

These in turn influence the prevalence of disease in the 

locality. Absence and distant health institutions result in 

difficulties in accessibility and enhanced cost of 

treatment. Therefore, people who are near to health 

institutions are safer relative to those who are away from 

such centers. Identification of potential malaria-risk 

localities helps the health authorities to minimize 

expenditure. The present study shows negative 

correlation between monthly incidence of malaria and 

distance from health facilities. The relationship of 

distance from health stations and malaria incidence was 

statistically significant.  

 

The high human population density has caused over-

cultivation, and severe environmental manipulations 

leading to extensive drought and recurrent famine in 

many areas. This leads to more movement of people 

from one area to another resulting in transmission of 

malaria (Wakgari et al., 2006; Wiseman et al., 2006). 

Malaria-risk may increase in certain regions due to 

population movement by labor related to agriculture, 

mining, conflict and refugees (Martens and Hall, 2000). 

Work opportunities and resettlement programs in 

malaria endemic areas can easily attract a large number 

of people, making them vulnerable to the disease 

(Meron, 2010). Major environmental transformations 

like deforestation and new construction take place 

during resettlement, enhancing the proliferation of 

mosquito breeding sites, and result in malaria outbreaks 

(Martens et al., 1995; Kathleen, 2002; Aster, 2010). The 

present study shows strong positive correlation between 

monthly incidence of malaria and human population 

density.  

 

Findings of the present study show that, a model-based 

malaria-risk map can be developed by establishing the 

relationship of various parameters using remote sensing 

and geographic information system. It also reveals that 

remote sensing and GIS techniques can be effectively 

used in mosquito larval habitat identification and risk 

area mapping. The risk area identification map indicates 

affected areas. The final malaria-risk map of the study 

area shows that the entire study area has malaria-risk 

factors. The study area falls under very high, high, 

moderate and low risk areas. The malaria-risk map 

developed can support decision makers to take 

precautions in space and time so as to control and 

manage malaria incidence. 

 

Acknowledgements 

 

The authors are grateful to the School of Earth Sciences, 

College of Natural and Computational Sciences, Addis 

Ababa University, Addis Ababa, for providing financial 

support to carry out this study. 

 

References 

 

Abdulhakim, A. (2013). GIS and remote sensing 

integrated for malaria risk mapping, Kersa, Ethiopia, 

MSc. Thesis. Teri University, New Delhi. 

 

Ashenafi, M. (2003). Design and water management of 

irrigation systems to control breeding                                                                                                                                                      

of anopheles mosquitoes. Case study: Hara irrigation 

project, Arba Minch, Ethiopia, MSc. Thesis, 

Wageningen University, Wageningen.  

62



Journal of Geomatics  Vol 10 No. 1 April 2016 

Aster, T. (2010). GIS and RS based assessment of 

malaria risk mapping for Boricha Woreda, Ethiopia, 

MSc. Thesis, Addis Ababa University, Addis Ababa. 

 

Bautista, C.T., A.S. Chan, J.R. Ryan, C. Calampa, M.H. 

Ropers, A.W. Hightower and A.J. Magill (2006). 

Epidemiology and spatial analysis of malaria in the 

Northern Peruvian Amazon. American Journal of 

Tropical Medicine and Hygiene 75:1216−22. 

 

Carlos, A.V., A.F. Julián, M.C. Zulma, R. Patricia, C.L. 

Myriam and D. Sofia (2010). Correlation between 

malaria incidence and prevalence of soil-transmitted 

helminthes in Colombia: An ecologic evaluation. 

Biomédica 30:501–508. 

 

Ceccato, P., S. Connor and M.C. Thomson (2005). 

Application of geographical information systems and 

remote sensing technologies for assessing and 

monitoring malaria risk. Parassitologia 47: 81−96. 

 

Dongus, S., D. Nyika, K. Kannady, D. Mtasiwa, H. 

Mshinda and U. Fillinger (2007). Participatory mapping 

of target areas to enable operational larval source 

management to suppress malaria vector mosquitoes in 

Dar es Salaam, Tanzania. International Journal of 

Health Geographics 6:37. doi:10.1186/1476-072X-6-

37. 

 

Ehlkes, L., C. Anne, B. Kreuels, R. Krumkamp and O. 

Adjei (2014). Geographically weighted regression of 

land cover determinants of Plasmodium falciparum 

transmission in the Ashanti Region of Ghana, 

International Journal of Health Geographics 13:13−35. 

 

Erin, M., S. Jennifer, G. Katya, Y. Amrish, B. Teun, O. 

Wycliffe, K. Simon, D. Chris, A. Thomas, J.C. Smith 

and C. Nakul (2014). The cost effectiveness of malaria 

control interventions in the highlands of Western 

Kenya. PLoS One.; 9: e107700. 

 

Hay, S.I., J.A. Omumbo, M.H. Craig and R.W. Snow 

(2000). Earth observation, geographic information 

system and Plasmodium falciparum malaria in sub-

Saharan Africa. Advances in Parasitology 47:173–215. 

 

Kathleen, W. (2002). A review of control methods for 

African malaria vectors. Environmental Health Project, 

Activity Report 108, U.S. Agency for International 

Development, Washington. 

Kleinschmidt, I., B.L. Sharp, G.P.Y. Clarke, B. Curtis 

and C. Fraser (2001). Use of generalised linear mixed 

models in the spatial analysis of small area malaria 

incidence rates in KwaZulu Natal, South Africa. 

American Journal of Epidemiology 153:1213−21. 

 

Kleinschmidt, I., J. Omumbo, O. Briët, N. Van de 

Giesen, N. Sogoba and N.K. Mensah (2001). An 

empirical malaria distribution map for West Africa. 

Trop Med Int Health 6:779–86. 

 

Martens, P. and L. Hall (2000). Malaria on the move: 

Human population movement and malaria transmission. 

Emerging Infectious Diseases 6:103−109. 

 

Martens, W.J., L.W. Niessen, J. Rotmans, T.H.Jetten 

and A.J. McMichael (1995). Potential impact of global 

climate change on malaria risk. Environmental Health 

Perspective 103:458−64. 

 

Meron, M. (2010). Web GIS in decision support to 

control malaria: Case study in TiroAfetaWoreda, 

Oromia Region, Ethiopia, MSc. Thesis, Addis Ababa 

University, Addis Ababa. 

 

Oliveira, E.C., E.S. Santos, P. Zeilhofer, R. Souza-

Santos and M. Atanaka-Santos (2013). Geographic 

information systems and logistic regression for high-

resolution malaria risk mapping in a rural settlement of 

the southern Brazilian Amazon. Malaria Journal, 

doi:10.1186/1475-2875-12-420. 

 

Omukunda, E., A. Githeko, M.F. Ndong, E. 

Mushinzimana and G. Yanr (2013). Effect of swamp 

cultivation on distribution of anopheline larval habitats 

in Western Kenya. Journal of Vector Borne Disease 49: 

61–71. 

 

Palaniyandi, M. (2012). The role of remote sensing and 

GIS for spatial prediction of vector-borne diseases 

transmission. Journal of Vector Borne Disease 49: 197–

204. 

 

Patz, J.A., A.K. Githeko, J.P. McCarty, S. Hussein, U. 

Confalonieri and N. Wet (2003). Climate change and 

infectious diseases. Climate Change and Human Health: 

Risks and Responses103–137. 

 

Richard, Y. and I. Poccard (1998). A statistical study of 

NDVI sensitivity to seasonal and inter- annual rainfall 

variations in Southern Africa. International Journal of 

Remote Sensing 19:2907–2920. 

 

Saxena, R., B.N. Nagpal, A. Srivastava, S.K. Gupta and 

A.P. Dash (2009). Application of spatial technology in 

malaria research & control: Some new insights. Indian 

Journal of Medical Research 130:125−132. 

 

Sithiprasasna, R., W.J. Lee, D.M. Ugsang and K.J. 

Linthicum (2005). Identification and characterization of 

larval and adult anopheline mosquito habitats in the 

Republic of Korea: Potential use of remotely sensed 

data to estimate mosquito distributions. International 

Journal of Health Geographics 4:1−11. 

 

Solomon, N., K.V. Suryabhagavan and E. Gadisa 

(2015). Visceral Leishmaniasis (Kala-Azar) risk 

mapping using geo-spatial tools: A case study in Kafta 

Humera district, North Western Ethiopia, International 

Journal of Geoinformatics 11:21−26. 

 

Stephen, M. (2006). Landscape determinants and 

remote sensing of mosquito larval habitats in the high 

63

http://www.ncbi.nlm.nih.gov/pubmed/?term=Saxena%20R%5BAuthor%5D&cauthor=true&cauthor_uid=19797808
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nagpal%20BN%5BAuthor%5D&cauthor=true&cauthor_uid=19797808
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nagpal%20BN%5BAuthor%5D&cauthor=true&cauthor_uid=19797808
http://www.ncbi.nlm.nih.gov/pubmed/?term=Gupta%20SK%5BAuthor%5D&cauthor=true&cauthor_uid=19797808
http://www.ncbi.nlm.nih.gov/pubmed/?term=Dash%20AP%5BAuthor%5D&cauthor=true&cauthor_uid=19797808


Journal of Geomatics  Vol 10 No. 1 April 2016 

land of Kenya. American Journal of Tropical Medicine 

and Hygiene 74:69−75. 

 

Thomson, MC., S.J. Connor, U. D’Alessandro, B. 

Rowlingson, P. Diggle, M. Cresswell, C. Dark and G. 

Brian (1999). Predicting malaria infection in Gambian 

children from satellite data and bed net use surveys: The 

importance of spatial correlation in the interpretation of 

results. American Journal of Tropical Medicine and 

Hygiene 61:2–8. 

 

Wakgari, D., A. Ahmed and B. Yemane (2006). The 

interplay between population dynamics and malaria 

transmission in Ethiopia. Ethiopian Journal of Health 

Development 20:137−144. 

 

Wiseman, V.B., L. McElroy and W. Conteh (2006). 

Malaria prevention in the Gambia: Patterns of 

expenditure and determinants of demand at the 

household level. Tropical Medicine and International 

Health 11:419–431. 

 

Yasuoka, J. and R. Levins (2007). Impact of 

deforestation and agricultural development on 

Anopheline ecology and malaria epidemiology. 

America Journal of Tropical Medicine and Hygiene 

76:450–460. 

 

Yazoume, Y., S. Osman, K. Bocar and S. Rainer (2008). 

Environmental factors and malaria transmission risk: 

Modelling the risk in a holoendemic area of Burkina 

Faso. Ashgate Publishing Ltd., Surrey. 

 

Yihenew, A. (2007). Irrigation and socio-economic 

factors related to malaria transmission in Ziway.  M.Sc 

Thesis, Addis Ababa University, Addis Ababa. 
 

 

64


	Page i-iv.pdf
	JoGVol10No1.pdf
	001_Pap 316.pdf
	2. Study area and data used
	3. Methodology
	3.1 Analytic Hierarchy Process (AHP)
	3.2 Primary decision factors

	4. Flood Hazard Index (FHI)
	4.1 Algorithm
	4.2 Region specific FHIs

	Figure 2: Histogram distribution of FHI
	5. Results and discussions
	6. Conclusions
	References



