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Feature extraction of hyperspectral imaging data using texture analysis
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Abstract: Hyperspectral remote sensing is a tool for identifying objects using their spectral signatures based on the
principles of imaging spectroscopy. But, a very large number of bands available in hyperspectral data pose serious
problems in computation speed as well as may produce erroneous results due to data redundancy. This drawback
demands feature reduction/extraction of hyperspectral data specific to the purpose, which in this case is vegetation
discrimination. This work highlights technique of feature extraction based on image texture for Hyperion data over a
controlled forest site. A total of six texture measures were analyzed for feature extraction and best among them are
reported in this paper. The technique was compared with conventionally used Minimum Noise Fraction (MNF)
technique by evaluating its performance for classification of forest species. A number of other classifiers were also
evaluated. Comparison of classification results with the ground data yielded an accuracy of 82.73% with the proposed
method of feature extraction and Support Vector Machine (SVM) as classifier while 65% accuracy in case of
conventionally used method of MNF coupled with parallelpiped classifier.
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1. Introduction

Broadband remote sensing data had been widely used
for various land applications in the yonder years.
However, in order to enhance the application of remote
sensing data in various applications, the era of
hyperspectral remote sensing has emerged in the recent
past. Hyperspectral sensors acquire reflectance values
at hundreds of different wavelengths thereby enabling
detailed applications in the field of agriculture, mineral
exploration etc (e.g. Goetz, 2009; Champagne et al.,
2001; Clark et al., 1990). Large numbers of narrowly
spaced bands often exhibit high correlation between
them leading to undesirable band redundancy, which
hinders correct and accurate hyperspectral image
analysis. Therefore, dimensionality extraction, within
the trade-off constraint of error and speed, is absolutely
necessary for useful applications.

Supervised classification requires n’-1 training sites
(Hughes, 1968), where n is the number of bands. For
broadband data, this condition is easily met, but, with
hundreds of bands, hyperspectral data poses serious
limitations on selection of training sites (Hughes
Phenomenon, Richards and Jia, 2006), -classifier
adopted and hence degrades classification accuracy.
Much work has been carried out in the past to
overcome this issue. Various techniques have thus
evolved in the past which include distance measures
like Bhattacharya distance and JM distance (Richards
and Jia, 2006), divergence and transformed divergence
techniques; eigen value approaches like Principal
Component Analysis (Farrell and Mersereau, 2005)
and Minimum Noise fraction (Boardman and Kruse,
1994) etc. Divergence methods are more suitable for
multi-spectral data. When they are applied to

hyperspectral imagery, the calculations become
enormous and, hence, difficult. PCA neither computes
noise statistics nor optimizes SNR but only reorders
the transformed components in terms of decreasing
image quality, which may not be always true (Green et
al., 1988). MNF requires a priori knowledge of noise
and non-singular matrices for computation of
covariance. Another weakness of MNF lies in its shift
difference approach, which requires a homogeneous
patch having pixel number greater than number of
bands. This implies that determination of suitable
dimensionality extraction method for a particular
application is a tough job.

Images, generally, contain regions characterized by
variations in brightness instead of unique brightness
values. Image texture refers to such spatial variations
in image tone. It is a storehouse of information through
which quantification of the perceived texture of an
image can be done, thereby, describing the spatial
arrangement of pixel intensities in an image (Shapiro
and George, 2001). Texture analysis has tremendous
applications in many areas including remote sensing
applications. Although, in the field of medical
imaging, texture analysis has demonstrated its crucial
role, however, it is in the state of budding development
for remote sensing applications. Image texture can be
defined in terms of various parameters like image
entropy, homogeneity etc which show independent
aspects of the images. Hence, in this work, image
texture has been utilized to reduce data dimensionality
with the objective of classification of tree species.

Conventionally used  dimensionality  reduction
technique  MNF was also used in this study,
particularly for comparing with the techniques
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mentioned above. Besides feature extraction, selection
of suitable classification technique for hyperspectral
images is equally important. While attempting
supervised classification of hyperspectral data, the
small ratio between the number of available training
samples and the number of features (Hughes effect,
Hughes (1968)) pose serious difficulty in the process.
Consequently, the standard classifiers used for multi-
spectral data are not suitable. Techniques specific to
hyperspectral data like Spectral Angle Mapper (SAM)
are the substitute. However, if features are
appropriately selected/extracted, the richness of other
classifiers can also be explored. In this paper, various
classification techniques are investigated by using two
types of dimensionality reduction/ extraction methods.

2. Study area

The study was carried out for the tree species present
in the experimental plots of Forest Research Institute,
Dehradun, Uttarakhand, India. The lush green estate
spreads over 450 ha, with the outer Himalayas forming
its backdrop. The topography of the area is of gentle
relief, with elevation ranging from 584 to 617 m above
sea level. The area is a typical representative of some
of the country’s major forest species i.e. Chir pine
(Pinus roxbhurghii), Tropical Pine (Pinus caribea),
Teak (Tectona grandis), Sal (Shorea robusta), Saza
(Terminalia tomentosa) and Eucalyptus (Eucalyptus
hybrid).

3. Materials and methods

3.1 Data used

Data from space borne push-broom sensor Hyperion,
onboard NASA’s EO-1 satellite having 242 bands in
400nm-2500nm range of electromagnetic spectrum and
at an average resolution of 10nm was used for this
study. The data selected was of level 1Gst, dated 25™
December 2006. Level 1Gst is radiometrically
corrected and orthorectified data. Table 1 lists some of
the important characteristics of the sensor.

Table 1: Hyperion specifications (Pearlman et al.,

2001)
Number of bands 242
(196 calibrated and unique
bands)
Spectral range (um) 0.4-2.5
Spatial resolution 30m
Radiometric 6%
Accuracy
Swath 7.5 km
GSD 30m
Quantization 12 bit
Orbit height 705 km

3.2 Data pre-processing

Hyperion data consists of 242 bands including 44
uncalibrated bands (1-7, 58-76, 225-242). Besides
this, bands 56-57 and 77-78 are overlapping. Hence,
on removing the uncalibrated and overlapping bands, a
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total of 196 unique spectral channels were obtained. A
spatial subset of the Hyperion scene was extracted for
the study. The level 1Gst Hyperion data is inherently
georeferenced and radiometrically corrected. Hence,
only atmospheric correction was done as the
preliminary step. Atmospheric correction involves
selection of suitable aerosol and atmospheric model,
water and aerosol retrieval. This process was
performed using the atmospheric correction module
Fast Line-of-sight Atmospheric Analysis of Spectral
Hypercubes (FLAASH) of ENVI image processing
software which corrects wavelengths from 0.0004 mm
approximately to up to 3 mm. The reason for using
FLAASH over other methods is because it incorporates
the MODTRAN4 radiation transfer code, as a result, it
quite accurately compensates for atmospheric effects
(Matthew et al., 2000).

3.3 Feature extraction

3.3.1 Image texture based feature extraction: Two
basic categories of texture analysis can be defined,
namely, statistical and structural. Statistical texture
analysis techniques primarily describe texture of
regions in an image through higher-order moments of
their grayscale histograms (Tomita and Tsuji, 1990). In
simpler terms, it can be said that statistical approach
sees an image texture as a quantitative measure of the
arrangement of intensities in a region. On the other
hand, structural texture analysis techniques describe
texture as to comprise of well-defined texture
elements. Texture analysis based on extracting various
textural features from a gray level co-occurrence
matrix (GLCM) (Haralick et al.,, 1973) is the most
popular and cited technique. The GLCM approach is
based on the use of second-order statistics of the
grayscale image histograms. The GLCM functions
characterize the texture of an image by calculating the
co-occurrences of pixels with specific values in an
image, creating a GLCM, and then extracting statistical
measures from this matrix. The GLCM of an image is
an estimate of the second-order joint probability, Ps(i,j)
of the intensity values of two pixels (i and j), a distance
d apart along a given direction. Haralick et al. (1973)
proposed 14 textural parameters calculated from Pj, all
of which are seldom used. However, the correct choice
of parameters lies in their ability to extract the most
prominent features. For example, in areas with smooth
texture, the range of values in the neighborhood around
a pixel will be a small value; in areas of rough texture,
the range will be larger. Similarly, calculating the
standard deviation of pixels in a neighborhood can
indicate the degree of variability of pixel values in that
region. Therefore, GLCM based texture analysis was
employed for this work. This method includes
‘variance’, ‘homogeneity’ (Measures closeness of
elements in GLCM to the diagonal elements),
‘contrast’ (Measures local variations), ‘dissimilarity’,
‘correlation’ (Measures joint probability) and ‘entropy’
(Degree of randomness) of the image in order to assess
the suitable bands for discrimination purpose. Table 2
describes methods of computation for the said texture
measures. In addition, the table gives computation
methods for ‘mean’ and ‘standard deviation’.
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Table 2: Computation formulae for texture

measure
Texture Method of computation
measure
Entropy S: 'Zi=l ton 2:i=] ton P5 (ls.') log PB (ls.])
Contrast C:Zk=0 ton-1 l(2Zi=l ton 2i=l ton PS (laj)
Correlation Co= (Zi=1 ton Zi=1 0 1 Ps (1)~
Hxlly)/CxOy
Homogeneity H= Zi:1 ton Zi:1 ton PS (la.])/(1+‘1']|)
Mx= z:i:1 ton z:':1 ton PE (17.])
Mean ) et
My zziZI ton Ei? ton P6 (1,_])
Standard Gxi §f=l ton S:HX;Z é'?:I ton ?5 81];
Deviation Gy =1 ton uy i=1ton L5 (1,]
Variance (6)*

3.3.2 Minimum Noise Fraction (MNF) based
feature extraction: Principal components analysis
(PCA) is a popular technique for data compression that
produces uncorrelated bands, segregates noise and
reduces dimensionality (Richards, 1999). It transforms
data coordinates in a manner such that the first
principal component is along the direction of
maximum variance. It then maximizes the variance in
successive components. However, Farrell and
Mersereau (2005) suggested that for targeting at
activities like discrimination of objects, PCA is not
suitable. Nonetheless, Minimum Noise Fraction
(MNF) transform, which essentially is noise adjusted
PCA, is a better alternative. It is a two stage linear
transform where noise is decorrelated and rescaled
followed by PCA (Green et al., 1988). Hence, out of
the conventionally used eigen value based techniques
of feature extraction, MNF was adopted for this study
mainly to compare with the proposed technique.

3.4 Classification

The features bearing uniqueness and rich in
information content generated by coagulating the
dominant characteristics of the target are the most
useful ones. Simultaneously, the choice of classifier
also plays a great role in proper species discrimination.
Hence, the dimensions obtained by using the two
techniques were evaluated by comparing the
classification results obtained from the use of various
classifiers. Apart from the conventionally used
maximum likelihood, minimum distance, Mahalanobis
and parallelepiped classifiers, the comparatively newer
techniques like Support Vector Machine (SVM),
Spectral Angle Mapper (SAM), Neural Network and
Binary Encoding were also evaluated. SVM separates
the classes with a decision surface, called hyperplane
that maximizes the margin between the classes. The
data points closest to the hyperplane are called support
vectors and are crucial for training sets. It often gives
good classification results for noisy datasets. SAM is a
classifier that uses an n-dimensional angle to match
pixels to reference spectra by calculating the angle
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between the spectra by treating them as vectors in a
space with dimensionality equal to the number of
bands (Kruse et al., 1993). Binary encoding encodes
the data and spectra into binary numbers, based on
bands falling below or above the spectrum mean,
respectively. An  XOR function compares each
encoded reference spectrum with the encoded data
spectra and produces a classification image (Mazer et
al., 1988).

4. Results and discussions

4.1 Image texture based feature extraction and
classification

In order to select the suitable bands for vegetation
discrimination, the texture measures, variance,
homogeneity, contrast, dissimilarity, correlation and
entropy were computed using GLCM. The GLCM
matrix was created using each pixel along with its
immediate horizontal neighbor (x shift=1 and y
shift=0) for a 3*3 pixel window. Each texture measure
owned 196 images. Good quality bands (SNR>10)
were selected for each texture measure. This reduced
the number of bands corresponding to each parameter.
Finally, intersection of sets of bands was done to yield
final number of reduced bands available for further
analysis. Table 3 shows the permissible values for
different texture measures corresponding to SNR>10,
below which the bands were removed. SNR
computation was done by selecting 3*3 pixel window
from the scene for which average DN and standard
deviation (S.D.) were computed. SNR was thus
calculated as (Schowengerdt, 1997):

SNR=mean DN/ S.D. (1)

Outside the permissible values, the bands extracted
played insignificant to poor roles in image
classification either by not affecting classification
accuracy at all or by decreasing it by a few
percentages. Also, each texture measure was analyzed
for its significance in modulating classification
accuracy. This was done by deliberately removing one
texture measure at a time in the analysis to check the
effect it imparts to the classification accuracy.
Because, no significant contribution was shown by the
parameters homogeneity and correlation in feature
extraction by observing classification results,
consequently, the same were dropped from further
analysis.
Table 3: Texture measures

S. No. Texture Permissible value
measure

1 Variance >30

2 Homogeneity Not suitable

3 Contrast <10

4 Dissimilarity >4

5 Entropy >1

6 Correlation Not suitable
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The above-mentioned criteria reduced the number of
bands. However, the different texture measures ended
up with different sets of bands. Hence, intersection of
sets was performed to select the bands common to all
parameters. Accordingly, out of 196 unique bands, best
56 bands were selected of which 22 fell in the range
427-630nm (Chlorophyll absorption region), 1 band
centered at 681nm (also a Chlorophyll absorption
region), 2 bands within 1073-1083nm, 7 bands
between 1114 - 1185nm, 21 within 1457-1659nm
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(Lignin, cellulose and nitrogen absorption regions) and
3 within 1861-190lnm. These bands were then
adopted for further analysis i.e. classification. It is
noteworthy that dominant absorption features are
automatically selected through this procedure. Figure 1
shows the bands selected as a consequence of image
texture analysis. It may be noted that frequency value 4
shows the common bands obtained through all the
texture measures collectively and hence the
corresponding bands were selected.

Band frequency as obtained from tally
- N

o

Wavelength (nm)

427 529 630 732 834 933 1033 1134 1235 1336 1437 1538 1639 1740 1841 1942 2042 2143 2244 2345

Figure 1: Bands selected after intersection of sets of bands corresponding to different texture measures

Forward MNF transform yielded a large number of
bands but with constraint of eigen value > 10 along
with the simultaneous check on image noise, 6 MNF
bands were obtained. These were the bands that were
used for discrimination purpose.

Although, a large number of classifiers are available,
yet, a careful selection of classifier is required for
optimal result having close resemblance with the
ground conditions. Supervised classification was
performed by using the ground truth map of the study
area. Various classifiers were evaluated for different
dimensionality  reduction techniques. Confusion
matrices were generated post classification. Table 4
shows a detailed comparison of different classifiers, in
terms of accuracy (obtained through confusion matrix)
when compared to ground truth map of the study area,
vis-a-vis dimensionality reduction techniques.

It is clearly evident from table 4 that overall accuracy
of classification is highest at 82.73% with SVM as
classifier and feature extraction through image texture
analysis. However, with MNF transform, maximum
accuracy is yielded by Parallelpiped classifier (65%).
Figure 2 shows the classified image using SVM
classifier and image texture based feature extraction.

Table 4: Evaluation of classifiers for dimensionality
reduction through texture analysis and MNF

transform

Feature Feature
extraction extraction
through through
Classification Texture K MNF K
Technique analysis co“:elf’tl‘) 2 | transform c:el;fpa
(Overall : (Overall :
accuracy accuracy
%) %)
Binary 409 0.203 52.6 0323
Encoding
Minimum 522 0.335 62.7 0.484
Distance
Neural
Network
(Hyperbolic 25.3 0.129 15.5 0
model)
Parallelpiped 553 0.351 65 0.55
Spectral
Angle 67.9 0.484 53.5 0.35
Mapper
Support
Vector
Machine 82.73 0.67 64.7 0.507
(Linear
model for
activation)
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Teak-mixed

Pine

Eucalyptus Sal

Figure 2: Classified scene of the study area using
image texture based dimensionality extraction and
SVM as classifier

5. Conclusion

Although, there are a number of feature
extraction/reduction techniques and still greater
number of classifiers for broad as well as narrow band
data, one looks for the methods in terms of ease of
application amalgamated with accuracy in results. In
this work, image texture based feature extraction of
hyperspectral data is prepesed. Conventionally popular
method of feature extraction through MNF is also
evaluated. Besides this, a number of classifiers are
evaluated to arrive at the best combination of
dimensionality reduction technique and classification
method for discriminating vegetation species.
Comparison of the classification output maps with the
ground map yielded image texture based feature
extraction clubbed with SVM classifier as the best
combination. The method proposed is simple, fast and
improves the classification results. However, the
methods are based on one case study. Further
implementation of the methods over a few more
datasets in varying environments is required for
ascertaining the robustness of the method for
dimensionality reduction of hyperspectral images.
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