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Abstract: Thematic maps representing the characteristics of the Earth’s surface have been widely used as a primary
input in many land related studies. Classification of remotely sensed images is an effective way to produce these maps.
The value of the map is a function of the accuracy of the classification. Selection of proper size of samples and
classification method are important factors which govern accuracy of thematic maps. In the present study, training data
sets of various sizes are used to investigate their effects on the classification accuracy. Two investigations have been
carried out. The first one makes use of equal sizes of training data for the classification of 0.6 meter spatial resolution
QuickBird-2 satellite image. The second experiment allocates higher sampling fraction for the classes of interest
while reducing the number of samples in the less important categories. Six supervised classification methods with
different characteristics are applied to produce land use/land cover thematic map of the study area. The classifiers used
in the study include: Parallelepiped, Minimum distance, Mahalanobis distance, Maximum likelihood, Neural Net work
and Support Vector Machine (SVM). After certain fraction of sample size, the classification accuracy showed
downward trend with the increasing number of training pixels. In the case of limited number of training pixels, SVM
and maximum likelihood classifiers showed higher classification accuracies than the rest of classifiers. In the case of
proportional training size sample, the overall accuracies of all classifiers have been reduced as compared with the first

experiment except for SVM classifier.
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1. Introduction

In the past few years, data from satellite sensors has
become an important tool for researchers studying land
use and land cover (LULC) change. Remote sensing
offers the advantage of rapid data acquisition of land
use information at a lower cost than ground survey
methods and the analysis of this data can provide
critical insights into the evolving human environment
relationship.

Land cover classifications are widely used processes in
the field of remote sensing. The general aim of land
cover classification is the associations of each pixel
within the image with a specific land cover class to
produce precise classification maps of the area.
Thematic maps derived from remotely sensed data are
used in many applications, including as input
parameters to models, as source of regionally extensive
environmental data and as basis of policy analysis
(Waske, 2007).

A variety of approaches for image classification is
available and can be divided into two major groups,
unsupervised and supervised. In unsupervised
classification, also called clustering, only some
parameters are required to be specified by the user.
These parameters usually include number of clusters,
criteria for convergence and no. of iterations. Then a
clustering method uses these parameters to uncover

statistical patterns that are inherent in the data.
Examples of conventional clustering methods are
ISODATA and k-means algorithm (Richards and Jia,
2003; Duda et al., 2000). It should be noted that the
statistical patterns identified are just clusters of pixels
with similar spectral characteristics. They do not
necessarily  correspond to any  meaningful
characteristics of ground objects. Consequently, after
unsupervised classification the user must attach the
actual meaning to the resulting classes since the
algorithm does not provide any final membership
decision (Jensen, 1996). A general problem of
unsupervised algorithms is that data can consist of
clusters with different shapes and sizes. Furthermore,
an applicable definition of clusters and the selection of
an adequate indicator for similarity are difficult (Jain et
al., 2000).

Supervised classification requires apriori knowledge
about the image data such as which types of land-use
exist in the study area and spatial locations of
representative samples for each type. The procedure of
supervised classification is more controlled by the user
than unsupervised classification.

Training samples for each land use type are first
collected by ground surveys, or from aerial photos,
maps or visual interpretation. Different collection
strategies, such as single pixel, seed, and polygon, may
be used (Chen and Stow, 2002). Signatures, which are
statistically based criteria for each class, are then
generated from the training samples. Finally the pixels
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in the image are sorted into classes according to the
signatures, by use of a classification decision rule
(Lillesand and Kiefer, 2004).

Training samples primarily collected on a per-pixel
basis are used to reduce redundancy and spatial-
autocorrelation. They are selected through image
interpretation with intensive field visits over this area.
Although more training samples are usually beneficial,
as they tend to be more representative to the class
population, a small number of training samples is
obviously attractive for logistic reasons (Li et al.,
2014). It is often recommended that a training sample
size for each class should not be fewer than 10-30
times the number of bands (Van Niel et al., 2005).

Sample size is an important consideration when
assessing the accuracy of remotely sensed data.
Each sample point collected is expensive and
therefore sample size must be kept to a minimum.
It is important to maintain large enough sample
size so that any analysis performed is statistically
valid (Congalton, 1991).

The number of samples for each category can also
be adjusted based on the relative importance of that
category within the objectives of the mapping or
by the inherent variability within each of the
categories. It is generally underlined that there is a
strong relationship between classification accuracy and
training data sets used in the learning stage of
supervised classification method (Zhuang et al., 1994;
Foody, 1999; Pal and Foody, 2010). Foody et al.
(2006) indicated that the accuracy of a supervised
image classification is a function of the training data
used. With many classification algorithms, no previous
study has reported an optimal number of training
samples, to test the sensitivity of an algorithm to the
size of training samples (Congcong et al., 2014).

Despite the fact that results of object-oriented
classification of high resolution images are of
considerable interest to researchers, segmentation is
not an easy task and requires adjusting the
segmentation parameters according to the situation.
This makes the object-oriented classification process
iterative and manual. Per-pixel classification is a
preferred method because satellite data sets are
acquired digitally on the basis of pixel units (Garcia-
Gutierreza et al., 2009). The objective of this paper is
to investigate the sensitivity of pixel-based classifiers
to training sample size in case of high resolution
satellite imagery

After describing the study areas and data sources in the
following section, this paper is organized as follows.
Section 3 describes the methods. Section 4 presents
and evaluates the results and the results are
summarized in Section 5.
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2. Study area and data sources

The study area chosen for this research covers
approximately 520*270m, and located in the western
part of Luxor city, Egypt. A 0.6 meter spatial
resolution and pan-sharpened image over the area of
study were collected in July, 2010 by QuickBird-2
satellite (QB02) and supplied in a TIFF digital format.
The image is supplied in a product level LV2A and
product type standard. This image is radiometrically
adjusted to improve the radiometric quality (see figure
1). Table 1 summarises the spatial and spectral
characteristics of the image used (DigtalGlobe, 2006).

Table 1: Characteristics of the image used

0.6 m

blue (450-520 nm)
green (520-600 nm)
red (630-690 nm)

Spatial resolution

Spectral resolution

Additionally, field surveys were carried out using a
handheld GPS to collect ground reference information.
After the detailed analysis of ground reference data,
it was decided that mainly six primary classes of
interest covers the study area, which are: built-up
areas; green areas; roads; ground; water; and platforms
as shown in figure 2. Class “ground” mainly
corresponds to grass, parking lots and bare fields. All
recognizable features, independent of their size, were
digitized. Buildings that were connected were digitized
as individual buildings. Larger areas covered by trees
were digitized as one polygon.

platform [ roads [ green_area

others [l buliding |l Ground

I Nile
Figure 2: The truth image
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3. Methodology

3.1 Image classification

In this study two investigations have been carried out.
The first study makes use of equal sizes of training
data (100, 200, 300, and 400) pixels of six classes
(building, green areas, road, ground, water and
platforms) for classification of the QuickBird image.
The second experiment implements the
recommendation of Congalton (1991) to concentrate
the sampling on the categories (classes) of interest
and increase their number of samples while
reducing the number of samples taken in the less
important  categories. A small addition makes a
Proportion and fit the sample size for each class and its
area (number of pixels) in the image depending on the
optimum ratio of training size used in Kavzoglu and
Colkesen (2012) i.e. 0.42%. The experimental work
was implemented in several stages as shown if figure
3.

Data Acquisition (0.61m pansharpened
QuickBird Imagery)

Training Stage

i i

Training samples at Proportional sample
varinus sizes size

}

Classification Stage

. Parallelepiped

. Minimum Distance

. Mahalanobis Distance

. Maximum Likelihood

. Neural Net work

. Support Yector Machine (SVM)

.

Classification
ACCUracy assessme nt

=R R

Figure 3: Procedure of the proposed comparison

3.2 Accuracy assessment

Meaningful and consistent reliability measures of
thematic map reliability are necessary for the map user
to access the appropriateness of the map data for a
particular application. The accuracy of the thematic
map may significantly affect the outcome of an
application. Measures of map accuracy are equally
important for the producer of a thematic map to
analyze sources of error and weaknesses of a particular
classification strategy.

Measures of map accuracy are well established in the
literature (e.g., Story and Congalton, 1986; Stehman,
1997; Congalton and Green, 1999). Most commonly,
accuracy assessment involves the comparison of a
classified thematic map with the classification of
randomly selected samples of reference data (Stehman,
1997). The most widely used measures of accuracy are
derived from an error matrix (Foody, 2002). It is worth
mentioning that no one classification will be optimal
from the viewpoint of each different user (Lark, 1995;
Brown et al., 1999).
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The overall accuracy for each of the classifications was
assessed using the reference data and based on
equation 1:

oca = NP )
NRP

where OCA is the overall classification accuracy; NCP
is the total number of correctly classified pixels and
NRP is the total number of reference pixels.

4. Results and analysis

4.1 Using training samples at various sizes

Table 2 and figure 4 show that SVM and Mahalanobis
distance performed the best with overall accuracy of
80% for both, followed by Maximum likelihood with
78.33% overall accuracy. In terms of training sample
size, the following results have been obtained:

1. The best performing training sample size for both
SVM and Neural Net work is between 200 and
300 pixels per class.

2. The best performing training sample size for
Mabhalanobis distance is around 200 pixels per
class.

3. The best performing training sample size for
Maximum likelihood is between 100 and 200
pixels per class.

4. The best performing training size sample for
Minimum distance is around 300 pixels per class.

5. The best performing training size sample for
Parallelepiped is around 100 pixels per class.

Above results show that optimum training sample size
varies from one classifier to another. All classifiers are
shared in the same behavior of after critical point
(optimum training size sample), the classification
accuracy showed downward trend; it was negatively
affected with the increasing number of training pixels.
Moreover, it is clear that in the case of limited number
of training pixels, SVM and maximum likelihood
classifiers produced higher classification accuracies
than the rest of classifiers. It is worth mentioning that
for SVM, highest overall accuracy of 80% was
achieved with the training data set containing totally
1200 pixels (200 pixels per class). These results
conform to observation of Kavzoglu and Colkesen,
(2012) who explained that considering training set
size, classification performances of SVMs improved
till a certain level.

The overall accuracy has relatively stabilized values
with the increasing of the sample size for Minimum
distance, Mahalanobis distance, Maximum likelihood
and SVMs. On the other hand, the value of the overall
accuracy has greatly fluctuated with the sample size
increasing for Parallelepiped and Neural Network
classifiers.
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This sample distributed to each class as its percentage
as shown in Table 3.

Table 2: Results of different training sizes with
platform class. The highlighted cell shows the
maximum overall accuracy for each classifier

Table 3: Size of proportional sample per class

Figure 4: Overall accuracy for each classification
type with platform class for different training sizes
sample

4.2 Using proportional sample size

According to Congalton (1991), stratified random
sampling is recommended where a minimum
number of samples are selected from each
category. Sometimes it is better to concentrate the
sampling on the categories of interest and increase
their number of samples while reducing the
number of samples taken in the less important
categories. Also it may be useful to take fewer
samples in categories that show little variability
such as water and increase the sampling in the
categories that are more variable such as urban
areas.

In this study a procedure has been applied to calculate
a proportional training sample size depending on the
optimum ratio used in Kavzoglu and Colkesen (2012)
which is 0.42%. First, a trust image of the study area
digitized using ArcGIS 9.1 software. After that, using
the software, the number of pixels for each class has
been determined, and then the percentage of each class
calculated. Finally, the required sample size was
calculated. As compared to Kavzoglu and Colkesen,
(2012), a sample of 10500 pixels for 1735*%1442
QuicBird image, a sample of 1616 pixel is required for
the 865*445 QuicBird image used in our experiment.

Classifier Overall accuracy % Actual
.Pz}rallelepilped 43.33 | 31.67 | 30 30 | 38.33 No. of | Percent Cz;l(?ulat?d raining
Minimum distance | 63.33 | 66.67 | 70 | 66.67 | 58.33 Class pixel o training size size
Mahalanobis distance | 70 80 | 78.33 | 78.33 | 71.67 (inpixels) | oivel)
Neural Network 55 | 48.33 | 48.33 | 33.33 | 48.33 GA 29861 93 150 155
SVMs 78.33 80 80 75 | 76.67 R 83117 758 417 401
Sample size /class 100 200 300 400 | Prop. G 94580 294 475 489
- P 27764 8.6 139 137
— Total | 321972 | 100 1616 1662
50 4 e B: Buildings; GA: Green Areas; R: Roads; G:
=== Ground; W: Water; P: Platforms
70 i 1 = ! ’ ’
o & — — Figure 5 shows the overall accuracy obtained for each
E 50 {eﬁ classifier in the case of proportional training size
2 @i NG P sample. The results clearly indicates that SVMs still
E w = NG ,l;? performing the best in terms of overall accuracy. On
© a0 the other hand, the overall accuracies of all classifiers
have been reduced as compared with the optimum
20 . S . .
previous results. The reduction in overall classification
0 accuracy caused by each classifier as compared with
5 : case one (equal sizes of training samples) was
52¢100  se200  size300  sized00  proportinal determined and summarized in table 4. Whereas the
Training Size Ssmple she application of Minimum distance classifier resulted in
s bk bl tnetwark a maximum reduction of 11.67%, the application of
—S—mindistance —pt—max lkolhood  —@=— VM SVMs resulted in a minimum reduction of 3.33%. The

most important observation is that there was no
decrease in the overall accuracy for the Neural
Network. However, all classifiers have shown that with
the proportional sample size, the overall accuracy is
comparable with the best overall accuracy. On the
other hand, many contradictions are noticed in the
performance of the classifiers with different training
sample sizes. One possible reason for the discrepancies
in the results of overall accuracy can be the
convergence of the platform layer in the value of the
spectral resolution with the building layer which,
would lead to significant misclassifications between
the two layers of buildings and platform and this is
confirmed by visual inspection of the results as shown
in figure 6. Therefore, there is a necessity to rely on
other data and information than the values of the
spectral resolution such as spatial and/or spectral
attributes.

20
70
&0
50 4

#a0
EN]
20
10 +

halanobi klihood support
vector

machine

neural
network

distace

Figure 5: the overall accuracy obtained for each
classifier in the case of proportional training size
sample
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Figure 6: Classication result of SVM. White
circles show misclassification between building (1)
and platform (2)

Table 4: The reduction in overall classification
accuracy caused by each classifier as compared
with case one, equal sizes of training samples

Classifier Reduction %
Parallelepiped 5
Minimum distance 11.67
Mabhalanobis distance 8.33
Maximum likelihood 6.66
Neural Network 0
SVMs 3.33

5. Conclusions

In this study, five training sample sizes (100, 200, 300,
400 and proportional size) were compared for six
supervised classifiers which include: Parallelepiped,
Minimum distance, Mahalanobis distance, Maximum
likelihood, Neural Net work and Support Vector
Machine(SVM). The classifiers have been tested on a
pixel-based classification. This investigation has
shown that optimum sample size depends on. All
classifiers shared in the same behaviour of after critical
point (optimum training size sample), the classification
accuracy showed downward trend. Moreover, in the
case of limited number of training pixels, SVM and
maximum likelihood classifiers produced higher
classification accuracies. The convergence of one class
in the value of the spectral resolution with another
class leads to significant misclassifications. Therefore,
spectral and/or spatial information from satellite
imagery can also be applied along with image data in
order to improve the performance of the classification
process and to refine the results. Based on the results
obtained in this research, future work is required to use
medium resolution (Sm or 25m) data for image
classification. This would be more appropriate to bring
out the importance of sample size versus methodology.
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