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Local commission error analysis of some recent geopotential models: case study in Egypt
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Abstract: In the current work, the local precisions of some recent geopotential models were investigated. This was applied to
the Egyptian Territory as an illustrative case study. In particular, computer software was prepared, which computes the global
and local uncertainties of the various geopotential model-synthesized anomalous functions, based on the published global noise
standard deviations of the relevant coefficients. In this respect, comparisons were held among the global and local uncertainties
of'the various synthesized gravitational features. Based on the obtained results, it could be concluded that the local uncertainties
of the various synthesized gravitational quantities are almost uniform, and typically greater than the relevant global ones.
Compared with the noise of some scattered observed data with different types, such uncertainties are significant and should not
be neglected. So, it is recommended to take such local model noise into consideration during the evaluation of geopotential
harmonic models, with respect to different types of observed gravitational data. Also, the local precision of geopotential models
should be launched into the remove-restore technique in local geoid, anomaly or deflection modeling via the various integral
methods. Finally, the used mathematical algorithm could be further investigated, regarding its ability to locally examine the

signal-to-noise ratio of the harmonic models.
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1. Introduction

The use of geopotential harmonic models as reference fields
in local and regional gravity field modelling has been a
standard tool. This could be accomplished via either the least-
squares collocation approach or the integral approach.
Examples for integral methods are the Stokes, Vening
Meinsez, Deflection-Geoid and Hotine's formulas. In
modern collocation solution trends, the noise of both the
input gravitational observations and the harmonic
coefficients of the reference field can be incorporated in the
solution (Arabelos, 1989; Tscherning et al., 2001). So, the
collocation solutions yield signals' error estimates, which are
based on the error budget of both the input gravitational data
and the reference field.

Regarding the integral methods, the noise of the input gridded
gravitational data could be easily used for the estimation of
the precisions of the solutions, via the law of error
propagation. However, in these methods, the local precisions
(or local commission errors) of the relevant removed
geopotential model-derived quantities have not yet be
considered. The same comment is valid for any subsequent
use of a so-obtained local geoid model, for example, in
levelling by GPS.

Therefore, the objective of the current study is to analyze the
local commission error behavior of four recent geopotential
models. This will be associated with comparisons to the
relevant global commission errors. For this purpose,
appropriate computer software was prepared. In particular,
the software designed for computing the local precision of
geopotential models is based on the SPHARM subroutine

(Forsberg and Tscherning, 2008). The harmonic models
under study are EIGEN-CGOIC (Reigber et al., 2006),
GGMO3C (Tapley et al., 2007), EGM2008 (Pavlis et al.,
2008) and ITG-Grace2010 (Mayer-Giirr et al., 2010). Such
models have coefficients up to degree and order 360, 360,
2160 and 180, respectively. In the current work, Egypt was
selected as the investigation's geographical window.
Regarding its global noise behavior, EGM2008 was
investigated up to degree 2160. Locally, this model was
considered up to degree and order 400 only, as will be
discussed in Section 3.

2. Global uncertainties of geopotential models

Table 1 lists the parameters of the harmonic models under
consideration. Such models are arranged according to their
release date. Among the four models, ITG-Grace2010 is a
satellite-only harmonic model.

Table 1: Parameters of the investigated harmonic

Model Max. KM Equatorial
Degree (m’ s radius a
(m)
EIGEN- 360 | 3.986004415x10™ | 6378136.46
CGO1C
GGMO3C | 360 | 3.986004415x10™ | 6378136.30
EGM2008 | 2160 | 3.986004415x10™ | 6378136.30
ITG- 180 | 3.986004415x10™ | 6378136.60
Grace2010

The global commission error of a geopotential model reflects
the impact of the noise inherent into the model's coefficients
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on its behaviour, in a global sense. Cumulative error spectra,
which are the sum error degree variances up to a certain
degree n, are particularly useful in evaluating the resultant
commission error (Tscherning, 1974).

Expressed in terms of the type of the anomalous quantity, as
synthesized from a geopotential model, one has geoidal
height, gravity anomaly, gravity disturbance and vertical
deflections' global commission errors. In spherical
approximation, the cumulative error degree variances, EV, of
the respective model-derived gravitational features could be
expressed as follows

EVN = (R)z z X (02Cnm + cFZSnm), (1)
n=0 m=0
EVae= (KMRY)? £ (01 2 (oo + O sum), )
n=0 m=0
EVie= (KM/R)’ 2 (n+1)’ = (6 com + G snm)s )
=0 m=0
EVi= p* = T(n(+l)-m’) (Com+ ) (4)
n=0 m=0
B ) nmax n 5 5 B

EVT]_ p HZ:O E:: m . (G Cnm + O Snm)’ (5)
with

R the mean radius of the Earth (taken 6371 km),

nmax the maximum degree of the geopotential
model,

Ocnm the error standard deviation of the fully
normalized C-coefficient withdegreeand  order
nandm,

OSnm the error standard deviation of the fully
normalized S-coefficient with degree and order
nandm,

p the radian-to-second conversion factor

(p=206264.8 arc-seconds).

The above relations follow from the law of error propagation
as applied to the cumulative degree variances (cumulative
power spectra), relevant to the various anomalous quantities
(Tscherning, 1974; Jekeli, 1999). For a specific geopotential
model, the respective global commission errors (or the global
error standard deviations), ESs, could be expressed as
follows

ESy = JEVy (6)
ESpy, = VEVa @)
ES;, = VEVj, ®)
ESE: = JVEV: ©))
ESE, = J/EV, (10)

Table 2 shows the global commission errors of the various
gravitational quantities as computed for the four investigated
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models' uncertainties, based on Eq. (1) to (10). From Table 2,
it could be concluded that the ESs relevant to the four models
are in general significant, compared to the expected
observational noise for the five gravitational quantities.

3. Local noise analysis of harmonic models over Egypt

The various geopotential model-derived gravitational
quantities can be computed via the swapped spherical
harmonic synthesis as follows (Sneeuw, 1996)

Table 2: Global commission errors of the various gravitational quantities
relevant to the four models

Model N Ag og S n
(m) | (mgal) | (mgal) (arc- (arc-
second) | second)
EIGEN- | 0.204 | 5.397 | 5.456 0.711 0.722
CGO1C
GGMO3C | 0.144 | 5.112 | 5.154 0.675 0.689
EGM2008 | 0.079 | 1.956 | 1.978 0.259 0.263
(400)
EGM2008 | 0.082 | 4.229 | 4.245 0.564 0.603
(2160)
ITG- 0.199 | 5270 | 5.331 0.679 | 0.658
Grace2010
Nmax Nmax - .
N =(KM/y) X > (/)" [(Cyncosmh +
m=0 n=m
Sum sin M) Pym(cosO)], (1)
Nmax Nmax —.
Ag:(KM/rz) Xz Y (n-1) (a/r)" [(C pmcos mh +
m=0 n=m
Spm Sin MA)  Pym(cos®)], (12)
Nmax Nmax — .
8g=(KM/r2) X X (n+l) (/)" [(C pncosmh +
m=0 n=m
Sum sin mA) Pom(cosd)], (13)
Nmax Nmax — .
£ =-(KM/tYy) T T (/)" [(Cymcos mh +
m=0 n=m
Sy sin mA) dPy(cos0) /d6], (14)
Nmax Nmax -
n= -(KM/rzy.sine) Y m X (al)" [(C pp (-sin mA) +
m=0 n=m
Spm €0s MA) Pom(cosO)], (15)
with
0  the geocentric latitude,

L the geodetic longitude,
r thegeocentricradius,
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C',n the fully normalized spherical harmonic C-
coefficients of degree n and order m, reduced for the even
zonal harmonics of the reference ellipsoid,

§nm the fully normalized spherical harmonic S-
coefficients of degree n and order m,

f’nm(sine the fully normalized associated Legendre function
ofdegree n and order m.
v the normal gravity implied by the reference ellipsoid,

y = (ay.cos @+ bypsin’g)/N(a’cos’e + b’sin’ @), (16)
where a, b are the semi-major and semi-minor axes of the
reference ellipsoid; and y°and y’ are the relevant equatorial
and polar normal gravity, respectively.

The local uncertainties of the geopotential models describe
how the coefficients' noise propagates into the locally
synthesized gravimetric features, based on Eqs. (11) to (15).
In particular, applying the law of error propagation to Eq. (11)
to (15), and neglecting the error covariances among the
geopotential coefficients, one obtains the following
expressions for the local error variances of the synthesized
gravitational quantities

Nmax

z

Nmax

on’= (KM/ry)* £ (@)™ [(6°com OS> mMA  +

Csam Sin> ML) Py (cosO)], (17)

Nmax Nmax
Or = (KMA)* £ (n-1)* (a/r) ™ [(6 com €OS” M+

m=0 n=m

s Sin> mA) Py, (cosO)], (18)

Nmax Nmax
o5 = (KM/I)? T 2 (n+1)* (a/r)™ [(67com cOS” mA +

m=0 n=m

s Sin® mA) Py,7 (cosO)], (19)

Nmax

p3

n=m

Nmax
052 = (KM/rzy) L)

m=0

(/1) [(0%com cOS> ML +

Gsum SN2 ML) (dPom(cos®) /d0) 7, (20)

Nmax Nmax
o, = (KM/r’y.sind)” £ m* T (a/r) ™" [(6°com sin® mA +

m=0 n=m

s OS> MA) Py (c080)], @1

where 6°Cnm and 6°Snm are defined in Eqs. (1) to (5). The
above summation permutation is necessary for an efficient
numerical computation of the squares of the solid spherical
harmonics in Eq. (17) to (19). Also, this represents a capable
tool for the assessment of the squares of the first derivatives
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of the solid spherical harmonics, with respect to latitude and
longitude, as implied by Egs. (20) and (21), respectively
(Tscherning, 1976; Tscherning and Poder, 1982; Holmes and
Featherstone, 2002).

Egs. (17) to (21) were used to evaluate the respective local
error variances for the four investigated models at the nodes

of'a 0.5°x0.5° grid covering the study window (22° N< ¢ <

32°N; 25°E <A <36°E). Inregard to the five investigated
gravitational quantities, and based on the geographical
window under consideration, the above described
mathematical algorithm (Egs. 17 to 21) showed a numerically
stable and convergent behavior, up to degree and order of
about 400. The numerical tests revealed that this
inconvenience was not due to any numerical difficulties
during the assessment of the squares of the solid spherical
harmonics or the squares of their first derivatives (Holmes
and Featherstone, 2002). Particularly, such numerical
problem was found to be dependent only on the investigated
maximal degree, and so, on the magnitudes of the relevant
coefficients' noise. The estimated standard errors of such
ultra high-degree harmonic coefficients are rarely accurate
due to the limitations in computer power (Jekeli, 1999). So,
such result could signal that locally, beyond a resolution of
degree and order of about 400, the signal-to-noise ratio of the
EGM2008' coefficients begins to be unacceptably small.

So, the investigation of EGM2008 was restricted to that limit,
which happened to be comparable with the resolutions of the
other three models. This was of benefit for confining the
comparisons among the four models to the impact of the
coefficients' cumulative error budget rather than the number
of coefficients.

Table 3: Statistics of the 0.5°x0.5° local o, values relevant to the four
models (units: m)

Model Mean | Standard | Minimum | Maximum
deviation
EIGEN- 0.232 0.003 0.228 0.237
CGOo1C
GGMO03C | 0.174 0.004 0.167 0.181
EGM2008 | 0.090 0.001 0.089 0.092
(400)
ITG- 0.208 0.002 0.206 0.212
Grace2010

Table 4: Statistics of the 0.5°x0.5° local o, values relevant to the four
models (units: mgal)

Model Mean | Standard | Minimum | Maximum
deviation
EIGEN- | 6.343 0.137 6.135 6.584
CGO1C
GGMO3C | 6.294 0.197 5.992 6.632
EGM2008 | 2.320 0.054 2.237 2.415
(400)
ITG- 5.500 0.064 5.427 5.630
Grace2010
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The computed grids of local precisions (or local commission
errors) are expressed in terms of the local error standard
deviations, 6y, 6,,, G;,, 0. and on of the anomalous quantities.
Tables 3 to 7 show the statistics of such local uncertainties'
grids.

Table 5: Statistics of the 0.5°x0.5° local o,, values relevant to the four
models (units: mgal)

Model Mean Stapdgrd Minimum Maximum
deviation
EIGEN- | 6.409 0.137 6.200 6.652
CGo1C
GGMO3C | 6.345 0.198 6.041 6.686
EGM2008 | 2.346 0.054 2.262 2 441
(400)
ITG- 5.561 0.064 5.490 5.695
Grace2010

Table 6: Statistics of the 0.5°x0.5° local o. values relevant to the four
models (units: arc-second)

Model Mean | Standard | Minimum | Maximum
deviation
EIGEN- | 0.892 0.025 0.853 0.935
CGo1C
GGMO3C | 0.865 0.028 0.821 0915
EGM2008 | 0.323 0.009 0.309 0.338
(400)
ITG- 0.873 0.025 0.836 0917
Grace2010

Table 7: Statistics of the 0.5°x0.5° local o, values relevant to the four
models (units: arc-second)

Model Mean | Standard | Minimum | Maximum
deviation
EIGEN- 1.137 0.050 1.063 1.227
CGo1C
GGMO3C | 1.144 0.065 1.047 1.260
EGM2008 | 0.420 0.020 0.390 0.455
(400)
ITG- 0.873 0.016 0.858 0.908
Grace2010

In order to compare the local uncertainties of the four studied
harmonic models with the observational noise standard
deviations, such uncertainties were evaluated at the scattered
locations of some gravitational observations having the five
types. Tables 8 to 12 list the corresponding statistical
comparisons.

Table 8: Comparison among the scattered geoidal height data noise and
the co-located models' oN values (units: m)
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Table 9: Comparison among the scattered gravity anomaly data noise and
the co-located models' o, values (units: mgal)

Model Mean | Standard | Minimum | Maximum
deviation
N/P (data) | 0.031 0.018 0.001 0.050
EIGEN- | 0.233 0.003 0.228 0.237
CGOo1C
GGMO3C | 0.175 0.005 0.167 0.180
EGM2008 | 0.091 0.001 0.089 0.092
(400)
Grggg_OIO 0.209 0.002 0.206 0.212

Model Mean | Standard | Minimum|{Maximum|
deviation
N/P (data) 0.723 0.394 0.009 1.000
EIGEN-CGO1C| 6.351 0.098 6.129 6.563
GGMO03C 6.307 0.142 5.984 6.605
EGM2008 2.324 0.039 2.235 2.407
(400)
ITG-Grace2010| 5.494 0.050 5.427 5.615

Table 10: Comparison among the scattered gravity disturbance data noise
and the co-located models' o,, values (units: mgal)

Model Mean | Standard | Minimum | Maximum
deviation
N/P (data) | 0.017 0.006 0.009 0.022
EIGEN- | 6.250 0.028 6.200 6.280
CGo1C
GGMO3C | 6.115 0.041 6.042 6.157
EGM2008 | 2.283 0.011 2.262 2.295
(400)
ITG- 5.495 0.003 5.490 5.500
Grace2010

Table 11: Comparison among the scattered meridian vertical deflection
data noise and the co-located models' o, values (units: arc-second)

Model Mean | Standard | Minimum|Maximum
deviation
N/P (data) 1.600 | 0.000 1.600 1.600
EIGEN-CGO1C | 0.903 | 0.025 0.854 0.931
GGMO03C 0.879 | 0.028 0.822 0.910
EGM2008 0.327 | 0.009 0.309 0.337
(400)
ITG-Grace2010 | 0.885 | 0.025 0.837 0.913

Table 12: Comparison among the scattered prime-vertical deflection data
noise and the co-located models' o, values (units: arc-second)

Model Mean| Standard| Minimum| Maximum
deviation|
N/P (data) 1.600| 0.000 1.600 1.600
EIGEN-CGO1C| 1.182| 0.053 1.065 1.215
GGMO3C 1.203| 0.069 1.049 1.246
EGM2008 0.437| 0.021 0.391 0.450
(400)
ITG-Grace2010| 0.890[ 0.015 0.859 0.902

4. Conclusions

From Table 3 to 7, it could be concluded that the local
commission errors of each geopotential models are
significant and tend to be uniform over the investigated
geographical window. Among such models, the EGM2008
model, up to degree 400, possesses a superior local precision
values, regarding the five considered anomalous features.
This result, which is associated with the highest locally
investigated resolution in the current work, represents a good
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check on the numerical stability and convergence of the
mathematical algorithm followed in Egs. (17) to (21).

Regarding geoidal height uncertainties, the GGM03C model
has a considerable improvement over EIGEN-CGO1C. Slight
improvements exist, regarding the other gravitational
quantities.

In spite of being a satellite-only harmonic model, ITG-
Grace2010 has also remarkably better local undulation
precisions than that of the combined EIGEN-CGO01C model,
but is still worse than GGMO03C. However, these three
models show almost equal local uncertainties of the meridian
deflection component. Considering the gravity anomaly,
gravity disturbance and prime-vertical deflection
components, the ITG-Grace2010 seems slightly better than
the other two models.

Comparing Tables 3 to 7 with Table 2, one could conclude
that for each model, the resulting local commission errors are
typically greater than the global ones. Such conclusion is
valid for the five considered anomalous quantities.

Comparing Table 8 to 12 with Table 3 to 7, it is obvious that
the local precisions over the grid nodes are close to those
computed at the scattered data locations, both having very
small standard deviations about the respective mean values.
This ensures that regarding the study window, such local
uncertainties are almost uniform for a geopotential model-
derived quantity.

Finally, Table 8 to 12 show that the local uncertainties of the
gravimetric quantities, to be derived from geopotential models,
are much larger than the relevant observational noise.

5.Recommendations

Based on the above conclusions, it is recommended to take
into account such significant local uncertainties of
geopotential models during the evaluation of geopotential
harmonic models, in regard to different observed
gravitational data. Also, the local noise of geopotential
models should be incorporated in the remove-restore
technique while solving for local geoid, anomaly or
deflection models via the various integral methods. Finally,
the algorithm that was used in the current work could be
further examined, regarding its capability of locally flagging
the maximum degree, behind which the coefficients' signal-
to-noise dramatically degrades.
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