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Change detection and mapping of mangrove using multi-temporal remote sensing data: a case
study of Abu Dhabi, UAE
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Abstract: Decline in arid mangrove’s area is one of the most serious problems of the United Arab Emirates coastal ecosystems.
Tackling of these problems require precise mapping and understanding of the spatial distribution of mangroves on large scale.
This is the first study to map and monitor changes in the mangrove eco-systems of Abu Dhabi Emirate, UAE. Fuzzy logic
approach was used to map mangroves from multi temporal remote sensing data. The approach requires four precise parameters
such as the scale Level, merge level, thresholding and computing attributes. The resultant maps were then enhanced by applying
a 3x3 Sobel filter. This enhancement eliminated the noise and improved the quality of the mangrove maps at the density level.
Post-classification accuracy assessment was performed using confusion matrix. Changes in mangroves were detected by
computing the differences in the classified images. After that, change detection statistics for the periods 1990-2000 and 2000-
2006 generated. The results show that the mangrove area has decreased during the periods 1990-2000 and 2000-2006. The
decrease in mangrove area were -2.91 km’ (-0.104%) during 1990-2000 and -2.17 km” (0.091%) during 2000-2006. The present
study will be of great help to the environmental and coastal engineers and may be used as a background for generating mangrove

maps ata finer level.
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1. Introduction

TMangroves are reported to have covered up to 75% of the
world's tropical coastlines (Spalding et al., 1997). The
ecological value of these mangroves is acknowledged in
many respects: (i) protecting the coastline from tidal waves
and storm surges; (ii) acting as biological filters in polluted
coastal areas; (iii) supporting aquatic food-chains; and (iv)
shielding a large number of juvenile aquatic organisms
(Barbier and Sathiratai, 2004; Hogarth, 1999; Linneweber
and de Lacerda, 2002; Lugo and Snedaker, 1974). Mangroves
at the moment are, unfortunately, in serious decline due to the
expansion of human settlements, the boom of aquaculture
businesses, the impact of tidal waves, industrial activity and
storm surges (Barbier and Sathiratai, 2004; Linneweber and
de Lacerda, 2002). The estimated global mangrove area has
declined significantly from 19.8 million ha in 1980 to 14.7
million hain 2000 (Orth etal., 2006).

Inthe UAE, mangroves are common in tidal lagoons between
Tarif and near Ras Al-Khaimah Emirate. According to
Embaby (1993), the environmental and geomorphologic
conditions prevailing on the coasts of the UAE are favorable
for the growth of Avicennia marina, which can apparently
tolerate water of high salinity and dry weather conditions
(Howari et al., 2009). The total areal extent of this species in
the UAE is estimated to be 38 km2 (Blasco et al., 2001) witha
standing biomass between 70 and 110t per ha (Dodd et al.,
1999). Recently, the spatial distribution of mangrove forests

and seagrass habitat has declined because of
industrialization, urbanization and coastal engineering (Orth
et al., 2006; Short and Wyllie-Echeverria, 1996). Mangroves
play an important ecological role along this coast. They
prevent soil erosion, provide natural habitats for a large
number of fish and crustaceans and enable high primary
productivity through litter fall and decomposition. The local
authorities in the UAE encourage programs for mapping and
monitoring to estimate the extent of decline of this important
ecosystem over large scale. Remote sensing has become an
alternative to the traditional field monitoring for large-scale
tropical mangrove management (Blasco et al., 1998;
Verheyden et al., 2002; Demuro and Chisholm, 2003), mainly
because remote sensing technology allows information to be
gathered from the inaccessible areas of mangrove forests
that would otherwise be, logistically and practically, very
difficult to survey.

Remote sensing applications such as change detection are
based on a number of instruments on both aerial and satellite
platforms, including visible and infrared photographic
cameras (Sulong et al., 2002; Verheyden et al., 2002), video
recorders (Everitt et al., 1996), synthetic aperture radar
(Aschbacheretal., 1995; Held et al., 2003), and multispectral
and hyperspectral sensors (Demuro and Chisholm, 2003;
Gao, 1999; Green et al., 2000; Held et al., 2003; Ramsey and
Jensen, 1996). Although remote sensing applications for
mangrove mapping at the fundamental level are well-
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established (Aschbacher et al., 1995; Demuro and Chisholm,
2003; Gao, 1999; Green et al., 2000; Held et al., 2003;
Ramsey and Jensen, 1996; Sulong et al., 2002; Verheyden et
al., 2002), there is an increasing demand for mangrove maps
over a regional scale using multi temporal remote sensing
data.

The main objectives of this study were to (1) map mangrove
and seagrass and (2) to monitor their changes using multi
temporal remote sensing data.

2.Study area

The study area stretches between 24°15” 12" N and 24° 39’
48" N and between 54° 14" 48" E and 54° 39" 24" E. Itis
bound to the east and west by Abu Dhabi Emirate, UAE
(Figure 1). It occupies an area of about 1,856 km? and extends
from Mussafah area in the southwest to Ras Ghanadah in the
northeast of Abu Dhabi Emirate. The terrestrial landscape is
characterized by the presence of flat, salt-encrusted soil
covered by a thin layer of blue—green algae and mangrove
stands (Howari et al., 2009). The area belongs to arid region
with air temperature ranges from a high of47C® in summer, to
alow of 12C° in winter. The mean annual rainfall is less than
40 mm and evaporation rate exceeds 124 cm yr”' (Al-Sharhan
and Kendall, 2003).
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Figure 1: RGB LANDSAT image of the study area

3.Datasets

Three remotely sensed datasets were used in this study. The
first data set was multispectral images acquired by the
Landsat Themtic Mapper (TM) sensor of Landsat -4 satellite
in an area of Abu Dhabi Emirate on 28 August 1990 (Figure
la). The second data set used was multispectral image
acquired by the Landsat Enhanced Thematic Mapper plus
(ETM+) sensor of Landsat -7 satellite in Abu Dhabi Emirate
on 23th August 2000. The third data set used was
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multispectral images acquired by Landsat Enhanced
Thematic Mapper plus (ETM+) sensor of the Landsat -7
satellite in Al Ain area, Abu Dhabi, UAE on 25th September
2006. All remotely sensed data are in geographic (long/lat)
projection, with the WGS84 horizontal datum currently
available from the Tropical Rain Forest Information Center
(TRFIC) database (http://landsat.org/ortho/index.php).

4. Methods

Before image processing and change detection, three steps
are suggested to be performed sequentially for change
detection analysis (Canty 2006, Richards and Jia 2006). They
are (i) pre-processing. (ii) Image comparison and (iii) image
processing and analysis. To decide whether radiometric and
atmospheric corrections are needed or not, visual
interpretation and histogram analysis were applied on all data
sets. The results did not show significant changes due to
absence of clouds, haze and rain during the overpass and
data acquisition dates. Thus, no atmospheric correction was
needed.

The fuzzy logic approach was applied on multi-temporal and
multi-spectral remotely sensed data. The approach was found
to be the most sensitive and realistic in classification. The
approach was selected due to its ability to classify the mixed
pixels and has not been reported widely in the literature of
change detection applications. This approach begins
segmenting the images corresponding to real world objects.
The algorithm then simplifies the complex data thematically
to delineate boundary of features and to group the small
segments together. Finally, the algorithm computes attributes
(spatial, spectral and texture) of each object prior to
classification.

As a first step, the approach requires proper parameters input
from the interpreter. The first parameter, the Scale Level, is
related to the delineation of feature boundaries.

A higher Scale Level leads to more segments to be defined.
For example, Scale Level of 85 is much better than Scale
Level of 55 because the higher Scale Level delineates the
boundaries of features better. The second parameter, the
Merge Level, is related to the aggregation of small segments
within larger areas or grouping the small segments together.
For example, Merge Level of 65 is much better than Merge
Level of40.

Higher Merge Level would be useful for improving the
delineation of tree boundaries. The third parameter,
thresholding, is related to the grouping of the adjacent
segments based on their brightness to compute attributes. The
fourth parameter, which computes attribute, is related to
spatial, spectral and texture of each object. Classification was
then generated using an image segmentation algorithm
(Baatz et al. 2003). Finally, the resultant classification maps
were then enhanced and noise was eliminated by applying a
3x3 non linear Sobel filter.
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After performing the aforementioned steps, the accuracy
assessment was performed on each classified image using
confusion matrix by comparing classification result with
ground truth information.

In each case, an overall accuracy, producer and user
accuracies, kappa coefficient, confusion matrix, and errors of
commission and omission (Congalton, 1991) were reported.
The classified maps were corrected visually, using high
resolution Quickbird images. After the accuracy assessment,
change detection is done using classified images. Change
detection statistics were generated. The result is in the form of
subtractive maps and the features are represented in two
different color codes to facilitate visual interpretation and
discriminate new changes.

5. Results and discussion

Endmemeber collection spectra calculated from training sites
using Spectral Angle Mapper (SAM) classifier and horizontal
spectral profile are shown in Figure 2a. The spectral
reflectance of each feature on the ground is very closely
associated with leave water content, chlorophyll and leave
size (Ramsey and Jensen, 1996). All mangrove classes
showed subtle variation of spectral reflectance in visible and
infrared regions. For example, dense mangroves showed low
values for bands 2, 3 and 5 and slight high value for band 4. In
turn, these classes exhibited high values for band 6 indicating
a subtitle variation in thermal content of all classes. In visible
range, the dense mangrove showed lower reflectance than
scattered mangrove and sea grass (Figure 2b).

The fuzzy logic classification maps extracted from multi-
temporal and multispectral images are shown in Figure 3. The
use of small value for threshold wasn’t able to detect scattered
mangroves that distributed in the isolated small islands and
along intertidal channels. To overcome this problem, the
threshold value was increased to 65. It should be noted that
noise and shadows in the classified maps were removed when
applying a 3%3 Soble filter and thresholding. The fuzzy logic
performed well as compae to the image difference and
transformation with regard to qualitative description of
surface change .This is primarily due to the types of change
that image difference wasn’t able to detect and discriminate.
To perform accuracy assessment for the produced
classification maps, the program automatically picked up 450
random samples points and 50 ground-truth points. The
accuracy assessments of fuzzy logic classification from multi
temporal remote sensing data are summarized in table 1. The
2000 and 2006 classification image had an overall accuracy
0f 88.52 % and 89.82 % respectively. The 1990 classification
image had the overall accuracy of 95.84 % and kappa value of
0.9429. The significant enhancements in the classified maps
accuracy were also noticeable graphically by comparing the
Figure 2 with Figure 3.

Post-classification change detection based on class
comparison was accomplished using the three fuzzy logic
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Figure 2: Graphs of end member collection spectra
reflectance of mangroves

(a) and spectral

classification images during the period of 1990-2000 and
2000-2006. The 1990 and 2000 classified images were
combined together, resulting in eight change detection
classes. The classification maps show that the dense
mangroves increase in trunks and along intertidal channels
where the sea water intrusion increases. The dense
mangroves very closely associates with better tidal
interchange (Allen, 1965). In turn, seagrass and algi mat had
increased in shallow water of intertidal lagoons and channels.

The change detection images (Figure 4) show that the new
changes during the period of 1990-2000 are much higher than
the period of 2000-2006. These changes include all classes
such as mangroves and sea grass as well as sabkha and bare
land. These changes very closely associate with industrial,
natural process and urban development a (Howari et al.,
2009).

The dense mangrove showed slight decreasing during the
period of 1990-2000 and 2000-2006. The difference values
were -2.91 km’ (-0.104%) during the period of 1990-2000
and -2.17 km’ (0.091%) during the period of 2000-2006. In
turn, seagrass and algi mat showed significant increasing
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Figure 3: Classification maps derived from multi temporal remote sensing data using fuzzy logic approach
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Figure 4: Computed image differences of the classified images of 1990-2000 and 2000-2006
Table 1: Accuracy assessment of the classified maps
1990 2000 2006

Class Prod. Acc. % User Acc. % Prod. Acc. % User Acc. % Prod. Acc. % | User Acc. %
Mangrove High density 68.01 92.32 76.90 82.28 51.33 81.75
Mangrove M. Density 73.80 56.20 43.22 42.69 71.16 15.99
Mangrove Low Density 91.62 64.07 91.08 42.41 17.38 46.74
Algimat 98.81 99.63 93.80 99.10 96.19 91.63
Sea Grass 98.88 98.52 91.97 89.83 97.31 99.73
Water Body 99.37 98.23 99.30 97.53 97.30 100.00
Bare Land 95.49 97.45 81.53 93.20 93.72 97.39
Sabka 94.11 89.82 87.38 67.88 96.07 87.76
Overall Accuracy = (112852/118194) 95.4803% (104632/118194) 88.5256% (59465/66200) 89.8263%
Kappa Coefficient = 0.9429 0.8564 0.8756
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during the period of 1990-2000 and 2000-2006 (Table 1).

Although dense mangrove can be discriminated from non-
dense mangrove very accurately from LANDSAT images,
these data can only discriminate three mangroves at the
density level. This is due to the low spatial resolution of
LANDSAT images (30m).

6. Conclusion

This study reveals potential and capability of remote sensing
for coastal management, change detection and mangroves
mapping. In brief, this study presented fuzzy logic approach
to map and monitor changes in mangroves and seagrass from
multi temporal remote sensing data. The results of change
detection and classification using multi temporal remote
sensing data show significant changes along the shoreline of
Abu Dhabi Emirate during the period of 1990-2006. This
study detected slight changes in mangroves and scagrass
from multi temporal remote sensing data using fuzzy logic
classifier. Mangroves had decreased in locations along the
shoreline, creek banks of Abu Dhabi. In turn, mangroves had
increased in other locations where they experience frequent
tidal interchange, with their roots and lower trunks being
normally covered at high tide (Al-Sharhan and Kendall,
2003).

From the point view of this study, using spectral signatures of
mangroves alone was not adequate for mangrove
classification if the study area is characterized by many
species. Thus, ground truthing and field investigation are
needed to resolve the spectral bias of mangrove and seagrass
species.

Despite the low resolution of LANDSAT images and low
discrimination of mangrove species, it was found that the
fuzzy logic approach for mapping and detecting changes in
mangroves at the density level in remote and inaccessible
sites was worth as it considerably increased the mapping
accuracy. The present study is of great help to the
environmental and coastal engineers.

For the method to be more generally applied, more remote
sensing data and ground truthing are needed. Future work
will involve the application of hyperspectral remote sensing
data and LiDAR in order to detect species and mangrove
diseases.
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