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Abstract: Several heuristic methods have evolved in the last decade that facilitate solving optimization problems that
were previously difficult or impossible to solve. Deformation monitoring is a kind of continuous recording positions
(horizontal and vertical coordinates) precisely regardless the deformation pattern and instrument used. In general, a
deformation monitoring network can be designed using the trial and error method or analytical methods such as linear
programming and nonlinear programming. Recently, deformation monitoring networks have been designed by heuristic
optimization algorithms such as Genetic Algorithms (GAs), Particle Swarm Optimization (PSO) and Simulated
Annealing (SA).  In this paper, GAs and PSO are applied to a geodetic horizontal deformation monitoring network to
solve second-order design problem. The results proved that both GAs and PSO can be used as alternative methods in
place of the traditional optimization techniques with high efficiency.
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1. Introduction

Whenever any stress is applied to an object or a
surface, the object or surface might be prone to
changes in its shape and form, also known as
deformations (e.g. elongation, compression or
distortion). Any object, natural or man-made,
undergoes changes in space and time. It is very
important to ensure stability of engineering structures
as it is related to safety and life. Therefore, recently
deformation analysis has gained more attention.

There are several techniques for measuring the
deformations. These can be grouped mainly into two
as: geodetic survey, which include conventional
(terrestrial such as precise leveling measurements,
angle and distance measurements etc.),
photogrammetric (terrestrial, aerial and digital
photogrammetry), satellite (such as Global Positioning
System-GPS, InSAR), and non-geodetic techniques
using lasers, tiltmeters, strainmeters, extensometers,
joint-meters, plumb lines, micrometers etc. The
emphasis of the present study is on geodetic methods.

One of the main aims of geodesy is detection of the
deformations imposed on an object or an area which is
characterized with points of a geodetic network. Since
it is essential to detect deformations for many purposes
(monitoring plate tectonics, determination of global
datum, taking precautions for a construction which
may be under damage, etc.), considerable efforts and
investigations have been performed on deformation
analysis (Kavouras, 1982; Chen 1983; Chrzanowski et
al. 1983).

Before any deformation measurement campaign is
started, the geodesists should know about the result of
their work according to the set objectives. This leads to

the need for optimization and design of deformation
monitoring schemes. Essentially, the purpose for the
optimization and design of monitoring schemes is to
prevent the deformation measurement campaigns from
failing. It enables one to make decisions on which
instruments should be selected from the hundreds of
available models and where they should be located in
order to estimate the unknown parameters and achieve
the desired criteria derived from and determined by the
purpose of the monitoring scheme (Kuang, 1996).

Following the convention of design orders for geodetic
networks by Grafarend, (1974), one may consider the
same classification of the design orders for
deformation monitoring networks. There are, however,
significant differences in the design problems in
positioning networks versus monitoring networks
(Kuang, 1991). The classification of the optimization
problems (design orders):

a) Zero Order Design (ZOD): It is the search for an
optimal datum. But here in the deformation
monitoring network there is no ZOD problem
(Chen and Chrzanowski, 1986; Kuang, 1991).

b) First Order Design (FOD): It involves the
geometric shape of the network including the
optimum number and location of the geodetic
stations.

c) Second Order Design (SOD): It deals with the
determination of the weights of network
measurements.

d) Third Order Design (THOD) Problem:
Improvement of existing networks might be very
useful for monitoring networks.
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Analytical techniques, such as linear and nonlinear
programming, have been used for geodetic
optimization tasks. On the other hand, some heuristic
optimization techniques have been explored recently in
geodetic science such as genetic algorithms (GA),
simulated annealing (SA) and particle swarm
optimization (PSO) algorithms (Saleh and Chelouah,
2004; Sahabi et al., 2008; Yetkin et al., 2008, 2009
and 2011; Dwivedi and Dikshit, 2013; Doma, 2013).

The major motivation of this study as the subject of
this paper is to solve the SOD problem using heuristic
techniques and make a comparison between the results
of using these techniques and the previous results of
using analytical method for the same deformation
network as in Kuang (Kuang, 1991).

2. Observing campaigns

If the geodetic observables involved in a campaign can
be considered in a network without a configuration
defect, then the vector of observations, can be related
to the unknown coordinates, x, of the points or stations
involved by:

L = Ax + v (1)

where
L is an n-vector of observations, x is a u-vector of
unknown parameters,
v is an error vector and A is the design matrix.

The least squares estimates of the coordinates are
obtained by (Wells and Krakiwsky, 1971; Vanicek and
Krakiwsky, 1986; Amiri-Simkooei et al., 2012)

  LPAAPAx T1T 
 (2)

Here P is the weight matrix of the observables, the
inverse of their covariance, C. The variance-covariance

matrix   1T2
ox APAC


 provides the knowledge of

the accuracy of the coordinates corresponding to the
combination of the choice of instrumentation and
observation techniques, through the matrix P, and of
the configuration of the network, through A. In most
instances, 2

o (variance factor known a priori) is taken
as unity. In an actual adjustment, L in Equation (2) is
the misclosure vector w = Ax - L since the normal
equations are non-linear but this is not of consequence
in the design or pre-analysis.

The design for deformation monitoring assumes that
the same configuration and observables will be
involved in the repetition of a campaign.
Consequently, the process can be extended to consider
a pair of campaigns. The deformation can be
described, in a displacement field, dx, as the difference
in coordinates between the two campaigns, i.e., dx = x2
– x1, the covariance matrix of displacement component
is Cdx = Cx1 + Cx2, so the weight matrix is Pdx = 1

dxC  ,

and campaign 2 following campaign 1. This
displacement field would be the "observed"
displacement field since it results from measurements
and its displacement components are located only at
points involved in the network of observables. The
observed displacement field is related to the
deformation model parameters, c, through (Secord,
1995):

dx + v = Bc (3)

by the modeling design matrix B. The least squares
estimates of the deformation parameters are then
obtained from (Kuang, 1991; Yetkin et al., 2009):

  dxPBBPBc dx
T1

dx
T 

 (4)

with the covariance matrix of the

parameters,   1
dx

T
c BPBc


 .

For design purposes, the covariance of the deformation
parameters can be related directly to the covariance of
the observables by combining the above to yield:

  11TT
c BACAB.2c

 (5)

By specifying the type of instrumentation and the
observation techniques, the elements of C-1 are defined
(C-1 = P in Equation (2)).

Criterion matrices are adequate tools to set up
objective function (Doma, 2014). Let us consider the
case in which a criterion matrix c

cC for deformation
parameters has been chosen as the precision criterion,
the design problem then seeks an optimal weights such
that it can be best approximated by Cc (Kuang, 1991
and 1996; Yetkin et al., 2008 and 2011; Baselga, 2011)

  
i j

2
ijcij

c
c )C()C(min (6)

This approach to design can guide in selecting the
instrumentation, the techniques of observation, the
location of the points and the deformation model. In
general, there are several techniques that can be
applied for solving this problem. The two main kinds
of techniques are analytical optimization techniques
and heuristic optimization techniques.

3. Heuristic optimization algorithms

The word “heuristic” is used to describe algorithms
that are effective at solving complex problems quickly.
In such problems the objective is to find the optimal
solution. i.e. one that minimizes or maximizes an
objective function. In the present case, the objective
function is given in Eq. 6 and aim is to minimize it.
Recently, optimization problems for deformation
monitoring networks have been solved by heuristic
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optimization techniques such as Evolutionary
algorithms (EAs), PSO and SA. A basic strategy for a
heuristic as applied to design the monitoring networks
could be as follows:

a) Choose initial parameters,
b) Swap two of the objective functions to make

the objective of a lower value
c) Repeat step 2 until no improvements can be

made.

The goal of this study is solving the mathematical
model in Equation (6) for a pre-solved example in
Kuang (Kuang, 1991) using GAs and PSO, and
compare these results with the results of Kuang
(Kuang, 1991) who used analytic technique.

4.1 Genetic algorithms (GAs)

GAs are effective searching methods in a very wide
and huge space. In GAs, the design space must be
changed into the genetic representation (Goldberg,
1989). Therefore, GAs deal with a series of encoded
variables. The advantage of using encoded variables is
that it is possible to encode continuous functions like
discrete functions. GAs are based on random
processing or more specifically it is based on guided
random process. Therefore, random operators of
searching space are examined in a comparative way.

Basically, in order to use GAs the following three
concepts must be defined:

a) Objective function: In each problem, the purpose
is to maximize or minimize a parameter or
parameters. Therefore the objective function is
determined using mathematical relations and
proper weighing to solve the problem.

b) Searching space: The purpose of problem solving
is to find the best result among different results.
The space of all probable states is called searching
space. Each result could be represented by a value
which determines its propriety.

c) Operators of GAs: After achieving the objective
function and encoding the population, it is the
time for operators of GAs to start functioning. In
the simple GAs, the three main operators, namely
reproduction, merging and mutation, are usually
used. Deformation monitoring networks can be
optimized using genetic algorithms (Sahabi et al.,
2008; Doma and Elshouny, 2011).

4.1.1 Genetic algorithms technique

The workability of genetic algorithms (GAs) is based
on Darwinian’s theory of survival of the fittest.
Algorithmically, the basic genetic algorithms (GAs)
are outlined as below (Sivanandam and Deepa, 2008):

Step (I) Start: Generate random population of
chromosomes, that is, suitable solutions for the
problem. Population being combination of various
chromosomes is represented as in Figure 1.

Thus the population consists of four chromosomes
(Sivanandam and Deepa, 2008).
Step (II) Fitness: Evaluate the fitness of each
chromosome in the population.

Step (III) New population: Create a new population
by repeating following steps until the new population
is complete:

Selection: Select two parent chromosomes from a
population according to their fitness. Better the fitness,
the greater the chance to be selected as parent.

Figure 1: Population

Crossover : With a crossover probability, cross over
the parents to form new offspring, that is, children. If
no crossover was performed, offspring is the exact
copy of parents.

Mutation: With a mutation probability, mutate new
offspring at each locus. The mutation process shown in
Figure 2 is very simple.

Figure 2: Illustration of Mutation Operator

Elitism [Accepting]: Place new offspring in the new
population

Step IV Replace: Use new generated population for a
further run of the algorithm.

Step V Test: If the end condition is satisfied, stop, and
return the best solution in current population.

Step VI Loop: Go to step II.

Finally, the chromosome that has highest fitness is
chosen as the optimized solution.

MATLAB ver. 7 has a function for optimization using
GAs technique.

4.2 Particle Swarm Optimization (PSO)

PSO was originally designed and introduced by
Eberhart and Kennedy in 1995 based on social
intelligence of a group of birds or fishes (Kennedy and
Eberhart, 1995 and 2001; Shi and Eberhart, 1998).
Compared with other optimization algorithms, the PSO
is more objective and easy to perform. It is applied in
many fields such as the function optimization, the
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neural network training, the fuzzy system control, etc.
In PSO algorithm, each individual is called “particle”,
which represents a potential solution. The algorithm
achieves the best solution by the variability of some
particles in the tracing space. The particles search in
the solution space following the best particle by
changing their positions and the fitness frequently, the
flying direction and velocity are determined by the
objective function.

In binary PSO, a population (swarm) of birds (possible
solutions or individuals or particles) is initialized
randomly with values of {0, 1}. It means each particle
is a combination of one and zero which indicate the
presence or absence of corresponding coefficient in the
cost function respectively. These particles are
represented as the current positions (p). Then the
fitness values of these particles are calculated using the
cost function (Equation 6). Based on these fitness
scores, the best positions of each particle (PBest) and
the global best position of all particles (GBest) are
determined. In an iterative process, the velocity of each
particle (v) is updated as below (Yavari et al., 2012):

vij(t +1) = w(t). vij(t)+C1. r1.[GBesti (t)-
Pij(t)]+C2.r2.[PBesti (t)-Pij(t)] (7)

where,
i is the index of particle in the population;
j: is the index of bits in the binary string of each
particle;
t is the iteration number;
r1 and r2 are two uniform random values in [0,1];
C1 and C2 are two constant acceleration coefficients
and
w(t) is time varying inertia weight.

A nonlinear inertia weight (w) is used to adjust the
effect of the current velocities in computation of the
new velocity values as:

t
tt.)ww(w)t(w max

minmaxmin


 (8)

where,

wmax and wmin are two constant experimental
parameters, and
tmax is the maximum number of iterations.
Once the velocity for each particle is calculated, each
particle’s position is updated by applying the new
velocity to the particle’s previous position:

xi (t + 1) = xi (t) + vij (t + 1) (9)

The three steps of velocity update, position update and
fitness calculations are repeated until a desired
convergence criterion is met.

Currently, several studies are being carried out in the
area of particle swarm optimization and hence the
application area also increases tremendously
(Sivanandam and Deepa, 2008; Yetkin et al., 2008,
2009 and 2011; Doma and Sedeek, 2012; Doma, 2013;
Dwivedi and Dikshit, 2013).

5. Applied case study

As shown in Fig. 3, the network consists of 6 points is
taken from Kuang (1991). The simulated approximate
coordinates of all the network points are given in Table
1.

Figure 3: The horizontal monitoring network

Assume that the deformation model to be detected
includes a homogeneous strain field over the whole
area plus single point movements of points # 3, # 4 and
# 5. That is, the vector of deformation parameters to be
detected can be expressed as:

T
yxyxyxyxyx )dddddd(e

554433
 (10)

where dxi, dyi (i=3, 4, 5) represent the displacements of
points # 3, # 4 and # 5 in x-and y-directions

respectively, and yx  ,
and xy the normal strain

and shear strain parameters respectively. The
deformation model can be expressed as:

and6,2,1ifor
yxv

yxu

iyixyi

ixyixi











(11)

5,4,3jfor
yxdyv

yxdxu

jyjxyjj

jxyjxjj











(12)

We assume that the displacements have to be
determined with a standard deviation of 0.71 mm while
the strains with a standard deviation of 0.14 ppm. The
following diagonal matrix will be used as the precision
criterion matrix, i.e.,

Ce = 2 . Diag [(0.5 mm)2 , . . ., (0.5 mm)2, (0.1 ppm)2,
. . . ., (0.1 ppm)2] (13)

The target function for precision is then used to best
approximate the above criterion matrix is equation (6).
As for the initial observing plan, we assume to use
only an EDM instrument to measure all the possible
distances.
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To achieve the above set design criteria, an observing
plan has to be determined. To determine an optimum
observing plan, we assume that we can have a choice
of an EDM instrument with accuracies ranging from

2
km

22
s )S.ppm1()mm1(  to 2

km
2
s )S.ppm1.0( ,

where Skm is the distance computed from the
approximate coordinates. This model aims to best
approximation of the given precision criterion matrix.

Table 1: The simulated approximate coordinates of
network points

Point
Approximate coordinates

X(m) Y(m)
1 1125 1625
2 4625 375
3 6250 4625
4 3250 5875
5 3375 1500
6 4375 4625

The PSO parameters used in this research are shown in
Table 2. These parameters are selected based on
criteria given by Yetkin et al. (2011) and also
experimentally to balance the global and local search
of PSO.  However, it should be noticed that PSO is
rather stable to the mild changes of these parameters.
The GAs parameters are set as listed in Table -3. We
choose "Chromosomes length= 32bit" because we
expect our number to be two integer digit and six
decimal digits.

Table 2: PSO parameters
Parameter Value

No. of particles 30
Iteration 300

(C1) 1.75
(C2) 1.1

Table 3: GAs parameters
Parameter Value

Generations 500
Population size 100

Chromosomes length 32 bit

After the optimization solution process is done by
using heuristic techniques (both PSO and GAs), the
optimization results obtained from optimization model
are listed in Tables 4 and 5.

From Table 4 we can see the Goodness of fitting of the
precision criteria for the analytical technique (from
Kuang, 1991), PSOadf5 technique and GAs technique,
the precision criteria are less than and close to the
required value for all used techniques.
Table 5 lists the initial weights, optimal weights using
the analytical method (Kuang, 1991) and both PSO and
GAs techniques. From this table one can see that, the
sum of optimal weights which had been obtained from
the analytical method is 69.926, but, the sum of
weights which are obtained from heuristic techniques
(both PSO and GAs) are 66.381 and 65.242

respectively. This means that the heuristic techniques
can be used an alternative method to design a
deformation network with high efficiency. Figure - 4
shows the performance of the heuristic techniques VS
traditional techniques. From these results, one can see
that summation of optimized weights for observed
lines of the proposed network, GAs yields the smallest
value then PSO; as we know that there is a direct
relation between the cost of observations and their
weights consequently the less weight the most
economical.
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Figure (4): The performance of traditional, PSO
and GAs techniques in designing deformation
network.

Table 4: Goodness of fitting of the precision criteria
for both the analytical method and heuristic
optimization techniques (PSO and GAs)

Parameters Required
precision

Obtained Precision
Precision

from
analytical
technique
(Kuang,
1991)

Precision
from

heuristic
optimization
techniques

PSO GAs

dx3 0.71 mm 0.52 mm 0.53
mm

0.57
mm

dy3 0.71 mm 0.71 mm 0.71
mm

0.71
mm

dx4 0.71mm 0.66 mm 0.68
mm

0.71
mm

dy4 0.71 mm 0.59 mm 0.60
mm

0.58
mm

dx5 0.71 mm 0.68 mm 0.67
mm

0.67
mm

dy5 0.71 mm 0.65 mm 0.63
mm

0.54
mm

εx
0.14
ppm 0.14 ppm 0.14

ppm
0.14
ppm

εxy
0.14
ppm 0.10 ppm 0.11

ppm
0.10
ppm

εy
0.14
ppm 0.11 ppm 0.11

ppm
0.11
ppm
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6. Conclusions

The paper investigated use of two heuristic
optimization techniques namely, PSO and GAs, to
solve a second order deformation monitoring network.
GAs and PSO were applied to a geodetic horizontal
deformation monitoring network. The performance
was compared with analytical methods. The results
indicated that the heuristic optimization techniques
have better efficiency than the analytical method in
solving the SOD problem.
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