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Abstract: During last few decades, significant efforts have been made to investigate the effectiveness of the
conventional multispectral classification approaches on hyperspectral data. Object-based classification approaches have
been investigated in the classification of high spatial resolution satellite data and found to be more efficient as
compared to the other classifiers. However, object-based classification approaches have not been explored much in
hyperspectral remote sensing, because of huge dimensionality of data. In this work, a novel classification framework
characterized by effective features selection technique is proposed for hyperspectral data. It is called as ‘OBCsvmFS’-
Object-Based Classification supported by Support Vector Machine Feature Selection. Effectiveness of other features
selection techniques on the performance of a few other classifiers is also investigated and a comparative assessment
was carried out through experimental demonstrations using Hyperion satellite data. The proposed classification
framework outperforms the existing classification approaches investigated here. It is also concluded that SVM-based
feature selection technique can play an important role in designing an effective object-based image analysis (OBIA)
classification framework.

Keywords: Classification, Features selection, Hyperspectral remote sensing, Multi-resolution segmentation, Object-
Based Image Analysis (OBIA)

1. Introduction averaged learning subspace method (ALSM, Bagan et
al., 2008), independent component analysis (ICA,
Contiguous, narrow bandwidth of hyperspectral data Kosaka et al., 2005) and nonlinear principal
makes possible detail assessment of earth surfaces component analysis (NLPCA, Licciardi et al., 2012)
which would be otherwise not possible with the are found effective for the classification of
relatively coarse bandwidths acquired by multispectral hyperspectral remote sensing data in a supervised
sensors. Availability of large number of spectral bands mode. Over the last few decades, conventional and
with considerable information in hyperspectral data formerly widely accepted statistical classification
has offered significant potential for materials methods have been superseded by recent machine
recognition (Jensen, 1996) within a wavelength range learning algorithms. For example, multiple classifier
of interest and presents new challenges for the systems (MCS, Du et al., 2011) and support vector
development of advanced classification algorithms. machines (SVMs, Melgani and Bruzzone, 2004) have
Major difficulty found in hyperspectral remote sensing been reported as an efficient alternative to
is the huge dimensionality of data that gave rise to hyperspectral remote sensing. Genetic optimization
‘Hughes’ phenomenon (Hsu, 2007), which refers to the framework (Bazi and Melgani, 2006), geostatistics-
fact that sample size required for training a specific aided approach (Bahriaa et al., 2010), relevance vector
classifier grows exponentially with the number of machines (RVMs, Demir and Ertuk, 2007),
spectral bands. However, better consideration should incremental import vector machines (IVM, Roscher et
be given to the collection of training data that al., 2012), support vector data description (SVDD,
characterize the range of land surface variability at the Sakla et al., 2011), learn multiple-kernel SVMs (Sun et
spatial scale of the image (Pal and Mather, 2006). al., 2013) are recent additions into the domain of SVM
classification framework. An embedded-feature-
1.1 Hyperspectral classifications selection (EFS, Archibald and Fann, 2007) algorithm
supported by SVMs was proposed to perform both
Most routinely used conventional classifiers have band selection and classification simultaneously.
considerable difficulties while dealing with high Marconcini et al. (2009) proposed a novel composite
resolution data and they produce a characteristic, semisupervised SVM with significant increase in
inconsistent classification results (Marangoz et al., classification accuracy as compared to supervised
2006). Recently, researchers and scientists have SVMs with composite kernels.
developed advanced classification approaches for
hyperspectral remote sensing data. Artificial neural Ensemble approaches are now getting new vistas in
network (ANN, Atkinson and Tatnall, 1997), decision machine intelligence and pattern recognition
tree (DT, Lu and Weng, 2007), WAVANGLET applications. Random forest (RF) framework in binary
(Schmidt et al.,. 2007), border vector detection hierarchical classifier (BHC, Ham et al., 2005),
adaption (BVDA, Kasapoglu and Esroy, 2007), AdaBoost (Chan et al., 2012) etc. are few popular
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ensemble classification systems. Robust support vector
method (Camps-Valls et al., 2004), wavelet domain
statistical ~classifier (Zhang et al., 2005), and
regularized maximum likelihood classifier (RMLC,
Mayer et al., 2007) can be put forward as an ensemble
classification system for hyperspectral data. Chi et al.
(2009) proposed an effective ensemble classification
approach where generative Gaussians model is
combined with support cluster machine discriminative
models with a minimal set of training data. In a few
studies, SVMs with Markov random field (MRF,
Tarabalka et al., 2010) classifiers were applied
effectively in hybrid mode and found to be with
improved performance as compared to other
conventional MRF models and SVM classifiers.

1.2 Object-based approaches

Object-based image analysis (OBIA) represents a
significant classification trend in remote sensing as
concluded by Blaschke (2010). Sheeren et al. (2009)
have proposed OBIA as an alternative to the pixel-
based classification approaches for very high-spatial-
resolution images. Object-oriented classifier of
eCognition (Harken and Sugumaran, 2005) was
effectively used for classification of wetlands. Very
recently, an OBIA-based approach (d’Oleire-Oltmanns
et al., 2013) is reported to have extracted landforms at
multiple scales from two distinct data types. Kriging-
based soft classification (KBSC, Das and Singh, 2009)
is an effective nonparametric geostatistical approach
where ground hyperspectral signatures were used to
detect subpixel targets. On the other hand, in a
semisupervised learning (SSL, Li et al, 2013)
algorithm both hard and soft labels were exploited
using soft sparse multinomial logistic regression to
enhance the performance.

In OBIA, a number of attributes or features are
associated with each of the image objects and attribute
values of those can be derived. Selection of optimal set
of features for classification of unknown image objects
is a very crucial step and very important for designing
effective classification system. Many features selection
techniques have been reported and out of those SVM
(Archibald and Fann, 2007), Gabor wavelets (Shen et
al., 2013), and sparse multinomial logistic regression
(SMLR, Zhong et al., 2008) etc. are effectively used.
eCognition software is one of the most successful
software in OBIA domain where feature space
optimization (FSO, Baatz et al., 2001) is used to define
optimal set of features to improve the classification
performance. However, effectiveness of SVM for
defining optimal set of features has not been reported
in any OBIA based classification approaches.

Here, it is proposed to utilize the SVM based feature
selection technique instead of FSO in eCognition and
assess the performance in terms of accuracy over a few
widely used advanced classification approaches.
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1.3 Dimensionality reduction

The dimensionality of hyperspectral data is a major
drawback when applying traditional approaches of
pattern recognition to a hyperspectral image (Mader et
al., 2006). Principal Component Analysis (PCA) is a
well established dimensionality reduction technique
which can reduce data in fewer independent bands
with noncorrelated information and are often more
interpretable than the source data. ICA (Hyvérinen and
Oja, 2000) transforms a set of mixed, random signals
into components that are mutually independent and the
advantage over PCA is that IC transformation can
distinguish features of interest even when they occupy
only a small portion of the pixels in the image.
However, ICA is computationally more expensive,
which limits its application to high-dimensional data
analysis (Du et al., 2006) and is more relevant for
classification. The minimum (or maximum) noise
fraction (MNF, Green et al., 1988) is a second major
algorithm belonging to the family of PCA techniques
and effectively used in hyperspectral data processing
(Harris et al., 2006; Yang et al., 2009). However, it
requires prior estimation of signal and noise covariance
matrices and it is computationally more expensive as
compared to PCA.

In this work, it is proposed to apply PCA to reduce
data dimensionality and mitigate the Hughes
phenomenon. Comparatively, PCA is much simple as
it does not require prior statistical information and is
computationally robust and efficient.

2. Data and methodology

Hyperion sensor data of NASA’s Earth Observing
(EO-1) satellite was used for investigation. It is the
first spaceborne hyperspectral instrument to acquire
both  visible/near-infrared  (400-1000nm)  and
shortwave infrared (900-2500nm) spectral data in 220
potential bands with a spatial resolution of 30 m with
7.6 km swath. Band specification of Hyperion data
acquired on August 13, 2006 is given in Table 1.

Table 1: Band specification of Hyperion data

SL Bands Wavelength (nm) Spectral
No. region
1 8-15 426.81-498.04 B
2 16-25 508.22-599.80 G
3 26-34 609.97-691.37 R
4 35-57 & 701.55-1991.96 NIR
77-184
5 185-220 2002.06-2355.21 MIR

The test site investigated here is located in the southern
part of Jorhat city, Assam, India. It is mainly a flat area
and represents a typical rural landscape with
agricultural land wuse, tree-clad areas and tree
plantation. Rural residential areas are usually
surrounded by agricultural fields growing rice,
vegetables, etc.



Journal of Geomatics

The classification is exclusively performed for
previously classified land use, for which training data
had been collected in the same vegetation period. The
training dataset had been prepared with reference to
the existing classified map, other satellite data sources
of same period. Training datasets in the form of GIS
layers were supplied and 40% of total training sets
were used for performance assessment of classifier.

PCA of the bands in each of the spectral region was
carried out and then selected the first PC which gives
the maximum spectral information. Finally, bands of
images are represented by the first PC of bands of each
spectral region (Fig.1). An example of color composite
(CC) is given in Fig. 2.

Hyperion bands
B/G|R| NR | MR

\ I \ [
PCA‘ PCA PcA

PCA
_| PCA | & &
28 g =
Y |d
2128 & %
Layer stacking

PC composite
image

Fig. 1: PCA flowchart

Fig. 2: CC of PC bands

OBCsvmFSs is realized through the following steps:

e  Multi-resolution segmentation on the images
based on spectral and shape homogeneity

e Application of SVM method for ranking or
selection of optimal features derived from the
image objects

e (lassification using fuzzy nearest neighbor (NN)-
classifier on a set of optimal features defined by
SVM

2.1 Multi-resolution segmentation

Multi-resolution segmentation, which minimizes the
heterogeneity and exploits respective homogeneity for
a given number of objects, was applied. Here, scale (S)
determines the maximum allowed heterogeneity for the
resulting image objects based on spectral and shape in
eCognition. In each loop, every image object is
handled once and the loops continue until no further
merger is possible. Heterogeneity (4) considers as
primary object features representing spectral and shape
of an object and can be defined as follows (Benz et al.,
2004):

h=w_.h +w,h, )

spec *" “spec

e[01] w, €[o.1], (ws

pec

Wopee +w,, )S 1

The spectral heterogeneity ‘A, " is the sum of the
standard deviations of an object in each of the PC and
the shape heterogeneity ‘4, of an object is associated
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with compactness ‘fc,y,  and smoothness ‘g, ’. The
weight parameters (W, and wy,) allow adapting the
heterogeneity definition to the application.

There is a difference between scale and spatial
resolution of image: the higher the value of scale, the
larger the resulting image objects. Hence, it is
suggested to do the segmentation analysis in different
levels of scale instead of analyzing the same in
different resolutions (Benz et al., 2004). A 2-scale
level approach was adopted as mentioned below:

i) Small image objects on level 1 have meaningful
spectral features, e.g. settlements, tree-clad, tea
plantation etc.

ii) Groups of settlements, tree-clad, tea plantation
aggregated to the level 2 along with agricultural crop
areas.

A number of tests have been carried out to assess the
dependency of scale parameter along with other
parameters of the multi-resolution algorithm on the
quality of image objects of interest. Four test levels
with different scales and other parameters are
illustrated in Table 2. Level 2 is the main classification
level and parameter applied in Test level T3 is found to
be more effective for classification. Image objects
creation during Test level T3 in L1 and L2 are depicted
in Fig 3 and Fig 4 respectively.

A detailed discussion on multi-resolution segmentation
with the associated features derivable from segmented
objects can be found in Baatz and Schéipe (2000) and
eCognition guide. However, some of the important
features are discussed here while illustrating results in
the discussion section.

Table 2: Parameters in multi-resolution algorithm

Testlevel S Wy  Wa  Weomp Wem
T1 L1 15 0.7 0.3 0.8 0.2
L2 30 0.8 0.2 0.5 0.5

T L1 25 0.7 0.3 0.7 0.3
L2 35 0.5 0.5 0.3 0.7

T3 L1 15 0.8 0.2 0.8 0.2
L2 30 0.7 0.3 0.8 0.2

T4 L1 20 0.4 0.6 0.7 0.3
| 40 0.7 0.3 0.8 0.2

| =Y

==

o7 - bl L"" G
Fig. 3: T3-L1 Fig. 4: T3-L2

2.2 SVM-based optimal features selection
Features of each of the image object are characterized

by spectral, spatial and textural morphological
properties, however all features are not equally
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influential to the performance of classifier. In
eCognition, FSO defines the optimal set of features in
terms of best class separable distances. Here, WEKA’s
(Hall et al., 2009) SVM-based attribute ranking
(SVMAttributeEval, Guyon et al., 2002) was utilized
instead of using ecognition’s FSO technique. It is
called as svmFS. In svmFsS, the significance of an
attribute is evaluated by using an SVM classifier where
attributes are ranked by the square of the weight
assigned by the SVM. SVM defines the decision
function D(f) with weights w; on an input vector
patterns f; of n dimensional feature vectors as (Cortes
and Vapnik, 1995):

D(f)=w-f+b )

N P 3)
k

where, w is the weight vector representing training
patterns, y, encodes the class label as binary value (+1
or -1), oy is soft margin parameters and b=<y;-w.f;> is
the bias value. Guyon et al. (2002) have explained in
detail regarding feature selection and ranking using
SVM (Cortes and Vapnik, 1995), where one variant of
the soft-margin algorithm was used effectively.

For comparison, an investigation was carried out to
assess the performance of classifier with the optimal
sets of features defined by three other features
selection techniques; CfsSubsetEval (cfsSE, Hall,
1998), ConsistencySubsetEval (consistSE, Liu and
Setiono, 1996) including eCognition’s FSO. The
assessment was done through kappa index agreement
(KIA) analysis on the same sets of hyperion data and
illustrated subsequently. Table 3 illustrates the
performances of fuzzy NN-classifier in terms of KIA
while using different sets of optimal features defined
the above techniques.

2.3 Fuzzy NN-classifier

In OBIA, fuzzy NN-classifier (Benz et al., 2004;
Chutia et al., 2012) has been successfully used for
classification of multispectral remote sensing data. It
searches for the closest sample image object in the
feature space defined by fuzzy membership grading on
a set of optimal features and classification is carried
out through the following steps:

e The dissimilarity measure d, between the sample
object Oy and the unknown object O, in the optimal
feature space can be computed as follows (Guyon

etal., 2002):

2
u

n(vi—vy
d, =3[ @

7=\ 9y

vy VY
where / and '/ are the respective object feature
values on feature f. oy is the standard deviation of the
feature values for f, used for standardizing the various
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features with varying ranges of values. A
multidimensional membership function using Gaussian
function can be defined as:

(z,-dy)’

su

20‘5
uld,)=e (5)
where z, and o, are the centre and width of the fuzzy
set u(d,,) respectively.

e Fuzzy classification (Benz et al., 2004) defines an
m-dimensional tuple of membership degrees, which
describes the degree of classification assignment u
of the unknown object O, to the m considered
classes as

Feo, = lfuc1 O, )u”c2 (Ou)r-wucm 0,) J (6)

An unknown object O, is assigned to a class if its
membership grading is highest for that said class. An
example of experimental result is depicted in Fig 5.

3. Results
3.1 Analysis on features selection

Optimal set of features selected by each of the
techniques is given in Table 3 with their effectiveness
on the performance of OBIA based classification
system in terms of KIA and overall accuracy (OA).
Total number of features in the Table 3 is 9, here
dimension or feature space means the number of
features defined by the features selection techniques. It
was observed that both svmFS and consistSE enhanced
the performance of OBIA classification system as
compared to its own FSO (Table 4). The study also
reveals that dimension does not play the most
significant role on the performance of any
classification system; however, as experimentally
observed, the type of optimal features defined by each
of the feature selection technique can influence the
performance. Features space with higher dimension
often increases the computation time and produces
inconsistent results.

Here, mNDVI is mean normalized difference
vegetation index of image objects and found as one of
the effective features in all the feature selection
techniques (Table 3) for improving -classification
accuracy. It is observed that classifiers with svmFS
results in higher classification accuracy with 0.88 KIA
as compared to other approaches and it plays an
important role in the performance of OBCsvmFS
classification framework proposed here.

3.2 Evaluation of performance

An investigation was carried out to examine the
effectiveness of svmFS optimization technique in
OBCsvmFS as well as in some other advanced
classifiers. This section illustrates the comparative
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performances of LibSVM (Chang and Lin, 2011),
linear logistic regression model (Landwehr et al.,
2005), K-NN with KDTree (Aha and Kibler, 1991),
bagging a classifier (Breiman, 1996) with random
forest (RF, Breiman, 2001), random sub space (Ho,
1998) with RF, and multi-layer perceptron (MLP,
(Baraldi et al., 2001) classifier approaches.

LibSVM is the most popular machine learning open
source library and computationally the most efficient
approach since it uses LibSVM to build the SVM
classifier. Here, LibSVM with svmFS provides higher
classification accuracy (85% OA) (Table 4) than while
employed with cfsSE, consistSE, and FSO. On the
other hand, OA of K-NN classifier is also found
satisfactory with svmFS; here, KDTree is effectively
used as a searching technique. RF in bagging and
random subspace are realized here as an ensemble
classification framework and have also shown a
satisfactory performance while employed with svmFS.
However, performance of MLP with cfsSE classifier is
comparatively better than while using svmFS and
others. The proposed classification framework
outperforms the above classification approaches with
0.88 KIA and 91% OA. However, performance of a
few other classifiers is also found satisfactory while
employed with consistSE and FSO (Table 3 and Table
4). A detailed analysis on the performance of the
proposed classification framework is illustrated in the
next section.

O Rice crop areas (current fallow)
@ Settlements mixed with vegetation

‘ @ Tea plantation
@ Tree-clad areas
@ Wetted rice crop fields

Fig. 5: One classification result by OBCsvmFS
4. Discussion

Conventionally, OBIA based approaches have been
found more robust and efficient in the classification of
high spatial resolution spaceborne as well airborne
data. Proposed classification approach is a kind of
multistage classification framework supported by
dimensional reduction of spectral bands and effective
SVM-based feature selection technique where soft
classification approach under OBIA has been
projected. It outperforms the other advanced classifiers
as described here.

Classification has been illustrated with five major land
use classes, namely rice crop areas (current fallow), tea
plantation, tree-clad areas, wetted rice crop fields, and
settlements mixed with vegetation (Fig. 5). Actual tea
grown areas within tea plantation and tree-clad areas
having similar band mean and brightness
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characteristics are classified satisfactory with shape
index. In such situation, shape index has an important
role since it defines the number of pixels forming an
image object and its association with neighboring
image objects. The study indicated that there were still
some misclassifications taking place because of the
shadow effects produced by clouds and hilly slopes. It
was visible in a few areas in the classification of
settlements that are mixed with vegetation.

In this study, it was observed that performance of
SVMs both in classification and features selection is
greatly enhanced. Some of the important observations
with reference to the OBCsvmFS have been made
during the study and are concluded below:

e Problem occurred due to Hughes phenomenon was
minimized effectively by applying PCA on the
bands of each of the spectral region.

e In OBIA, SVMs have tremendous potential to
define optimized feature space to enhance the
classification performance.

e Hyperspectral images exhibit strong dependencies
across spatial and spectral neighbors, which need to
be explored and established to be useful for
improving classification accuracy. Integration of
morphological profiles of image objects can further
improve the accuracy of OBIA approaches.

o Extraction of endmembers is always a key issue in
the pre-processing of hyperspectral analysis;
however, it is difficult to establish a relation
between endmembers of a specific feature with
field data because of the data quality.

e However, advanced classification approaches needs
to achieve a high degree of classification accuracy
with a minimal set of training data.

5. Summary

Recent technology is more biased toward usages of
nonparametric and soft classification framework as
compared to parametric classification approaches; the
biggest challenge is to deal with very high-spatial-
resolution hyperspectral data. The proposed approach
achieved the best accuracy in this case study, but it
needs to be investigated under different circumstances
to assess its performance over other approaches.

Further research is required to realize the proposed
approach in an ensemble mode to achieve better
results. The results reported here is quite encouraging,
but further efforts are required to evaluate the quality
of results of each of the intermediate algorithms such
as PCA, multi-resolution segmentation and features
selection to get the best performance of the proposed
approach.
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Table 3: Accuracy versus optimal set of features

Sl Features cfsSSE svimFS consistSE FSO
Nos
1 Brightness 4 4 4
2 Mean 1st PC [NIR]: mNIR v v v
3 Mean 1st PC [R]: mR v v
4 Mean 1st PC [G]: mG v v v
5 Maximum difference 4 4
6 Mean NDVI: mNDVI v v v v
7 StDev 1st PC [NIR]: stdNIR 4
8 Compactness v
9 Shape Index v v
Dimension 6 5 3 7
Kappa Index Agreement 0.78 0.88 0.83 0.80
(KIA)
Overall accuracy (OA) in % 80 91 84 82
Table 4: Comparative assessment of accuracy
Using various feature selection techniques
Classifier cfsSE svinFS Consists FSO
KIA OA KIA OA KIA OA KIA OA
Lib SVM 0.82 84 0.84 85 0.74 77 072 73
K-NN with KDTree 0.74 75 0.82 83 0.81 82 0.71 73
Bagging a classifier 0.65 67 0.80 82 0.77 79 075 76
with RF
Random sub space 0.74 76 0.80 82 0.70 72 0.76 78
with RF
MLP 0.80 82 0.79 81 0.81 83 0.71 73
OBCsvmFS 0.78 80 0.88 91 0.83 84  0.80 82
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