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Abstract: Combining data from different sensors has the potential to result in more accurate classification than a single
sensor. The availability of high quality RGB and LIDAR data provides efficient image classification using the
complementary properties of these data sources. This work mainly integrates Genetic Algorithms (GAs) with different
fitness functions to extract buildings, trees, roads and grass from aerial images and LIDAR data. K-Means (KM) and
Fuzzy C-means (FCM) algorithms were tested and compared, as fitness functions for GAs. Three groups of data were
applied which include: RGB group; RGB/LIDAR data group and RGB/LIDAR/attributes group. Error matrix and K-
HAT (kappa) statistics were adopted as well as visual inspection to evaluate the validity and robustness of the proposed
techniques. FCM proved to be a preferable fitness function for GAs-based classification from aerial images and LIDAR

data with accurate average classifications of 87.84%.
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1. Introduction

LIDAR has the advantage of accurately and rabidly
capturing surfaces. On the other hand, photogrammetry
is a well-established mapping; surface reconstruction
and feature classification technique that is
characterized by high redundancy feature observation
in multiple images (Ghanma, 2006). Also, features or
attributes created from aerial images and LIDAR data
are commonly used for land cover classification. Most
authors reported that the integration of multiple types
of data has led to improvement in classification
performance.

The accuracy improvement of unsupervised
classification remains a critical issue needing much
more efforts due to the great demand for efficient
automation of image classification.  Genatic
Algorithms (Gas), introduced by Holland (1975), is a
convenient method for heuristic unsupervised
classification (Coley, 1999; Pham and Karraboga,
2000). GAs offer several advantages over the
conventional unsupervised classification methods
which makes it as one of the most powerful unbiased
optimization techniques for sampling a large solution
space. One advantage is the capability to handle
solutions of high degree of complexity that often
involves large, non-linear and discrete attributes.
Plenty of studies have shown that the GA technique is
efficient to deal with large datasets and has a large
chance to avoid a local optimal solution than other
techniques (Huang et al., 2006; Zhou et al., 2010).
Moreover, GAs are less complex and more
straightforward as compared to conventional
algorithms (Tabassum and Mathew, 2014).

Image classification has been widely and successfully
applied by optimization algorithms specifically GAs

(Rothlauf, 2006) that confirm the potential of GAs to
produce a high level of quality results especially when
there is no ground truth (Coley, 1999).

GAs have been widely investigated in machine
learning and pattern recognition fields in which the
datasets used typically consist of a few data points. On
the other hand, there have been relatively few
applications of GAs for feature extraction from
remotely sensed data.

Liu et al. (2003) presented a new approach to road
extraction from high resolution satellite imagery based
on GAs with fitness calculation of clustering. The
proposed approach applies GAs to learn the parameters
and pick up good clusters automatically. The approach
is demonstrated on pan sharpened QUICKBIRD
imagery and preliminary results are encouraging.

Yang et al. (2006) have adopted a heuristic method
based on GAs to automatically determine the number
of cluster centroids during unsupervised classification.
The GAs unsupervised classifier was tested on an
IKONOS satellite image. Based on independent
ground truth, an overall accuracy of 71.1% was
reached as compared to 65.1% when using the
(iterative self-organizing data analysis techniques)
ISODATA algorithm.

Yang (2007) classified SPOT satellite images by GAs
and ISODATA and compared the results with a
supervised classification. The comparison showed that
the GAs have performed better than the unsupervised
ISODATA and as good as the supervised classifier. A
modified GAs using maximum likelihood, as a
clustering criterion, was also tested and proved to be as
good as the supervised classifier.
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Van Coillie et al. (2007) have applied GAs for feature
selection in object-based classification of IKONOS
imagery for forest mapping. The proposed method is a
three-step object-oriented classification routine that
involves the integration of: 1) image segmentation; 2)
feature selection by GAs; and 3) joint Neural Network
based object-classification. Results show that with
GAs-feature  selection, the mean classification
accuracy is significantly higher than without feature
selection.

In Mahi and Izabatene (2011), a Radial Basis Function
Neural Network (RBFNN) is applied for the purpose
of QUICKBIRD satellite image segmentation. During
the unsupervised learning of the RBF network, an
unsupervised GAs is employed to automatically
determine the hidden layer parameters. Experimental
results show that the RBF network combined to the
GAs is an attractive approach for segmentation of
multispectral remote sensing imagery.

Stavrakoudis et al. (2011) have proposed a multistage
genetic fuzzy classifier for land cover classification
from IKONOS satellite imagery. The proposed method
is a three-stage process: 1) the first stage iteratively
generates fuzzy rules, 2) a simplification stage follows
aiming at further improving the interpretability of the
initial rule base; 3) finally, a genetic tuning stage fine
tunes the fuzzy sets database improving the
classification performance of the obtained model. The
results indicate the effectiveness of the proposed
system in handling multidimensional feature spaces,
producing easily understandable fuzzy models.

Chu (2012) integrated feature selection, GAs and
Multi-Classifier System (MCS) with Dempster-Shafer
theory of evidence for classifying different datasets.
Classification results revealed that the proposed
technique resulted in significantly higher levels of
accuracy than any single classifier.

Almeida (2012) studied combination of GAs with
decision trees for the object-based land-cover
classification. The study found a satisfactory
performance for the automatic assessment of the
optimal segmentation parameters. Nevertheless, some
problems such as the shape complexity of some
targets, the internal spectral variability of certain
classes, and the diverse conditions of ageing and
maintenance of some roof classes found in the study
area led to an over-segmentation of some targets.

Wikantika et al. (2014) have compared the
performance of three models of Artificial Intelligence,
Neural Networks, Fuzzy Logic and GAs and
Maximum Likelihood statistical models in the process
of classification of satellite imagery to estimate
wetlands with Landsat image data. The comparison
showed that the accuracy of the model by Maximum
Likelihood is 84.64%, Neural Network Model is
98.78%, GAs model is 94.94% and Fuzzy Logic
models is 75.43%. Tyagi and Verma (2015) applied
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GAs for the optimization of cluster centres of Fuzzy C-
means (FCM) clustering algorithm.

So called indices or fitness functions are used to
determine whether convergence has been reached. It is
known that the choice of the index (classifier) has a
major impact on the results of classification. In
previous studies, a wide variety of indices have been
proposed to be the fitness function of GAs. These
include: K-means index (KMI); separation index (SI);
partition and separation index (PASI); Davies-Bouldin
index (DBI); Dunn’s index (DI); partition coefficient
index (PCI); partition entropy index (PEI); Fukuyama
and Sugeno validity index (FSVI); Xie and Beni
validity index (XBI); C-index (CI); and FCM index
(FCMI).

Yang and Wu (2001) introduced the PASI and
compared it with other five clustering indices, PCI,
PEL FSVI, XBI and DBI, for the clustering of SPOT-5
satellite image. The PASI proved to be superior to all
other indices.

Bandyopadhyay and Maulik (2002a) integrated the
DBI, DI, FCMI, and CI into GAs as fitness functions
for clustering analysis of several artificial and real life
datasets. The results showed that the proposed method
is able to distinguish some characteristic land cover
types in the image. Bandyopadhyay and Maulik
(2002b) also integrated KMI into GAs for
unsupervised clustering of the same datasets in order to
improve the defect of KMI, needs the initial cluster
numbers a prior. Bandyopadhyay et al. (2007) have
modelled the problem of GAs-based clustering as
simultaneous optimization of the XBI (Xie and Beni,
1991) and the FCMI (Bezdek, 1981). In this regard,
IRS and SPOT satellite images have been classified
and compared with the results of single objective GAs.
The comparison indicated that better clustering
performance is obtained if both of these indices are
optimized simultaneously.

Yang et al. (2008) applied the GAs for unsupervised
classification of multi-spectral IKONOS image. Three
different indices, DBI, XBI and KMI, have been tested
while varying a number of parameters of the GAs. The
XBI proved to be the most accurate and robust index.
However, it is much more sensitive to parameter
tuning. Yang et al. (2014a) have evaluated three
classification indexes, DBI, FCMI, and PASI, as
fitness functions in GAs classification of SPOT-5
satellite image. The results showed that the FCMI has
performed the best, followed by DBI and PASI. Yang
et al. (2014b) integrated DBI and FCMI, so-called
DBFCMI, in a GAs classifier to improve the accuracy
and robustness of classification. For the purpose of
comparison, well-known indices, DBI, FCMI and
PASI, were employed. A SPOT-5 satellite image was
applied for land use classification. As a result, the best
overall accuracy of DBFCMI, DBI, FCMI, and PASI
was 75.5%, 75.0%, 74.9%, and 74.2% separately.

Among all indices, FCMI has the advantage of
robustness for ambiguity and maintains much more
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information than other indices (Suganya and Shanthi,
2012). On the other hand, FCMI usually gives better
result for overlapped data where data point is
assigned membership to each cluster centre (Lu et al.,
2013).

This work is probably the first attempt to use GAs for
combination of multiple data sources, aerial images
and LIDAR data, for improvement of land cover
classification. To further improve the classification
performance and overcome the shortcomings of the
previous approaches, GAs have been proposed in this
research.

The main objective of this research is to develop an
accurate, time-effective and automatic method to
classify buildings, roads, trees and grass by the fusion
of aerial images, LIDAR data and attributes through
GAs. This objective is achieved by comparing and
combining the outputs from K-Means (KM) based
GAs and FCM based ones in order to improve the
quality of the classification results. In this regard, GAs
were applied with KM and FCM as fitness functions.
A combined method was applied to fuse the results
from both techniques.

For the rest of the research, the KM based GAs will be
referred to as KMGA while the FCM based one will be
referred to as FCMGA. All the methods proposed in
this research were implemented through a software
package generated by the authors in a Matlab
environment. After a detailed background in the
following section, this paper is organized as follows:
the classification methods used are described; then the
results are presented and evaluated; and finally the
results are summarized.

2. Background

GAs are adaptive methods which may be used to solve
a variety of optimization problems by the principles of
the evolution of a biological organism. Recently, GAs
have been used in a wide variety of optimization
problems, specifically in classifying digital data sets.
GAs are very different from most of the traditional
optimization methods. GAs generate a population of
solutions at each iteration to approach an optimal
solution. This means that GAs can process a number of
designs at the same time. In addition it selects the next
population by computations that involve random
choices. The following sections describe how to
establish a GAs classifier for automatically clustering a
data set.

2.1 String representation

In GAs applications, the parameters of the searched
space are encoded in the form of strings, so-called
chromosomes. Each chromosome, representing an
answer for the problem, is encoded by a binary, integer
or real number. A variable string length is designed
without assigning the number of classes a priori. A
chromosome is encoded by positive real numbers and a
negative integer ‘-1’ which represents a non-existent

155

Vol 9 No. 2 October 2015

cluster. The value of K (valid clusters) is randomly
assumed in the range (K, Knax), Where K,,,;, is usually
assigned to 2 unless special cases are considered. The
length of a chromosome is taken to be K,,,, where each
individual gene represents either a cluster centre or a
non-existent cluster. The typical size of the population
can range from 20 to 1000 (Coley, 1999). K; are chosen
randomly from the data set, and then are randomly
allocated in the chromosome (Bandyopadhyay and
Maulik, 2002a). As an example, assume an image
including 3 bands, N pixels for each layer, K,,;,,=2 and
K,,,x=6, the number K;equal to 5 for the chromosome i.
Let the 3 cluster centres be: (120, 66, 228); (170, 66,
264); and (21, 114, 6). Randomly, the classification
centres can be encoded into a chromosome as: -1 (120,
66, 228) (170, 66, 264) -1 (21, 114, 6) -1.

2.2 Selection and fitness function identification

The GAs should achieve two goals: maximizing the
classification accuracy; and minimizing the number of
selected features. These criteria used to create a single
objective function as follows:

F=w*Cx) + (I-w) *ﬁ (1)

where x is the feature subset, C(x) represents the
classification accuracy, N(x) is the size of selected
feature subset and w is a parameter between 0 and 1
which adjusts the influence of each criterion. As the
value of w is higher the weight of classification
accuracy in fitness function is greater. On the other
hand, reducing the value of w will give more penalties
on the size of x (Tan and Fu, 2008). By adjusting w, a
trade-off between the accuracy and the size of the
feature subset obtained can be achieved. For this
research, w was adjusted to 0.8 to avoid a large
decrease in classification accuracy. Before a GA is
operated, an objective function needs to be defined to
measure the fitness of each chromosome. The fitness
function assigns an adaptability degree to each
chromosome in the population. Sections 3.3.1 and
3.3.2 summarize the used fitness indices KM and
FCM.

2.3 Genetic operators

In general, GAs are composed of three main
operations: reproduction; crossover; and mutation.
Reproduction calculates a survival probability of each
chromosome which is a criterion to reproduce better
chromosomes for next generations. Crossover is a
swapping process to create new chromosomes between
the reproduced chromosomes. To avoid sticking to a
local optimum, mutation is assigned to explore the
possible optimums in all the space. The mutation
probability is usually set smaller than the crossover,
and controls the percentage to introduce new genes for
trial. If the mutation probability is too low, some useful
genes are never found out. On the other hand, if it is
too high, there will be severely random perturbation
(Gen and Cheng, 1997). These operations are repeated
until the terminal criterion is satisfied, and the best
string in the final generation is also obtained.
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3. Methodology

3.1 Study area and data sources

For this research a very high resolution digital aerial
image was available. The image covers an approximate
area of about 500x500m of the region surrounding the
University of New South Wales (UNSW) campus,
Sydney Australia. The area is a largely urban area that
contains residential buildings, large campus buildings,
and a network of main roads as well as minor roads,
trees, open areas and green areas.

The color imagery was captured by film camera at a
scale of 1:6000. The film was scanned in three color
bands (red, green and blue) in TIFF format, with 15pum
pixel size (GSD of 0.09m) and radiometric resolution
of 16-bit as shown in Figure 1. The characteristics of
image datasets are provided in Table 1.

On the other hand, the LIDAR data covers the study
area including the first and last pulse as well as the
LIDAR intensity data was used. Table 2 lists the
characteristics of LIDAR datasets.

Table 1: Characteristics of image datasets

Size(km) | bands | pixel | Camera Look Angle
size (deg.)

(cm) along | across

track | track

0.5x0.5 | RGB 9 LMK1000 | +30 +30
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Figure 1: An orthophoto of UNSW campus
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Table 2: Characteristics of LIDAR datasets

Optech ALTM 1225
Spacing across track (m) 1.15
Spacing along track (m) 1.15
Vertical accuracy (m) 0.10
Horizontal accuracy (m) 0.5
Density (Points/m?) 1
Sampling intensity (mHz) 11
Wavelength (um) 1.047
Average altitude (m) 1100
Laser swath width (m) 800
3.2 Data pre-processing
Data pre-preparation of the study area was

implemented in several stages as follows:

3.2.1 Filtering of LIDAR data: LIDAR data filtering
is the process of separating on-terrain points (DTM)
from points falling onto natural objects. A grid method
based on support vector machines has been applied for
filtering of LIDAR Data (Salah and Trinder, 2010).
After filtering of LIDAR points, it is converted into a
digital terrain model (DTM) image. A digital surface
model (DSM) was generated from the original LIDAR
point clouds (first and last pulses).

Finally, a normalized digital surface model (nDSM)
was generated by subtracting the DTM from the DSM.

3.2.2 Generation of attributes: Attributes are
necessary to recover some common problems that
emerge associated with high resolution image data,
notably shadows caused by tall buildings or trees; and
the spectral variability within the same land-cover
class. These disadvantages may cause lower
classification accuracy if the classification procedure
cannot effectively handle them (Zhou et al., 2008; Lu
and Weng, 2007). Before generating the attributes, the
aerial  photograph, already orthorectified by
AAMHatch, was registered to the LIDAR intensity
image using a projective transformation. The
polymorphic texture strength based on the Forstner
operator (Forstner and Giilch, 1987) has been
generated and used as input for the classification
process.

3.2.3 Generation of ground truth data: Accuracy
assessment allows evaluating a classified image. In
order to assess the performances of the proposed
methods, two sets of class values for randomly selected
points (900 points) in the classified image were
applied. One set of class values was automatically
assigned to these random points as they are selected,
and the other set of class values (reference values) is
input manually. These reference values are based on
the digital aerial image of the test area. The accuracy
assessment was performed by comparing the
classification results with the ground truth data. The
following sections illustrate the way the GAs can be
applied and integrated with KM and FCM for
unsupervised image classification.
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3.3. Methods

3.3.1 KM -based GAs Classification (KMGA):
Clustering algorithms can be broadly classified as
hard, fuzzy, possibilistic and probabilistic. KM is one
of the most popular hard clustering algorithms which
partitions data objects into k clusters where the number
of clusters, k, is decided in advance according to
application purposes. KM is a simple and common
clustering algorithm which can also be used within a
GAs framework. It provides an iterative scheme that
operates over a fixed number (K) of clusters, while
attempting to simultaneously optimize centre locations
and pixel assignments. KM represents the total
variation disregarding the distance between different
clusters. KM is computed as follows:

KM = 1/(Zk=1 2 tic 1% — i) ()

K = total number of clusters,

N = total number of pixels,

W= membership function of each pixel x; belonging
to the K®cluster,

x;= pixel i with grey values x (one for each band),

vi= average value of K™cluster in the current iteration.

First, the k-means algorithm chooses the “centres” c; of
cach cluster. In Bradley and Fayyad (1998), a
refinement process is performed through a function
probability associated with the set of pixels, in order to
find a local minimum for faster convergence of the
method. Secondly, a cluster is associated for each pixel
of the image based on minimum distance between a
given pixel x; and the “centre”, c; of that cluster. Once
the distance between the pixel and the centre of each
cluster is calculated, the pixel is associated to the
cluster that obtained the minimum distance. In this
stage the Euclidian distance is used as metric. Consider
a point x and a cluster centre ¢, where i indexes the
spectral components of each cluster. Once associated a
cluster for each pixel of the image, the clusters centres
are recomputed. To compute the cluster centre, the
mean of all pixels of that cluster are calculated.

The application of GAs in the area of classification
takes advantage of extensive optimum search
capabilities. General genetic procedure in the case of
determining the best k centres for clusters consist of
setting of parameters which include: number of
clusters, population initialization, initial population
fitness calculation and repeated selection, cross over
and mutation operations until termination criteria are
met (Hall et al., 1999).

For genetic KM selection of cluster number and other
algorithm specific parameter values is required. Next,
the population should be initialized with randomly
created cluster centres. New populations are created by
operations of selection, cross-over and mutation. For
every solution in population, a fitness value is
calculated according to the specific fitness function.
Solutions with high fitness values come into the
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mating pool. The process is repeated until termination
criteria are met. Below some implementation details
are given:

Chromosomes: represent solutions consisting of
centres of k clusters — each cluster centre is a vector of
values in the range between 0 and 255 representing
intensity of color component.

Population initialization and fitness computation:
Cluster centres are initialized randomly to k points
with values in the range 0 — 255. Next, a fitness value
is calculated for each chromosome in the population.

Selection: The operation of selection tries to choose
the best suited chromosomes from parent population
that come into the mating pool. After cross-over and
mutation operations, the child population is created.
Most frequently GAs select into mating pool the best
individual from a predefined number of randomly
chosen population chromosomes. This process is
repeated for each parental chromosome.

Crossover: The operation of crossover presents a
probabilistic process exchanging information between
two parent chromosomes during formation of two child
chromosomes. Mostly, a two-point crossover operation
is used.

Mutation: The operation of mutation is applied to
each created child chromosome with a given
probability. After the crossover operation children
chromosomes that undergo the mutation operation flip
the value of the chosen bit or change the value of the
chosen byte to another in the range from 0 to 255.

Termination criterion: A termination criterion
determines when the algorithm completes execution
and final results are presented to the user. The most
frequent termination criterion is that algorithm
terminates after a predefined number of iterations.
Other possible conditions for termination of the KM
algorithm depend on the degree of population diversity
or situation when no further cluster reassignment takes
place.

3.3.2 FCM-based GAs Classification (FCMGA):
GAs searching capability can be used for the purpose
of appropriately clustering a set of » unlabeled points
in N-dimensions into K clusters. The following outline
of the FCM-based GAs is based on Halder et al.
(2011). Considering an image of size mxn, the basic
steps of the FCM-based GAs for clustering image data
are as follows:

Encoding: For N-dimensional space, each cluster
centre is mapped to N consecutive genes in the
chromosome. Each chromosome represents a solution
which is a sequence of K cluster centres. For image
datasets each gene is an integer representing an
intensity value.
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Population initialization: In FCM-based Genetic
method, the FCM is run P times for generating a
population of P chromosomes; each chromosome is of
size K. Each chromosome of the population is a
potential solution by the FCM algorithm with number
of clusters ¢=K. The FCM algorithm assigns pixels to
each category by using fuzzy memberships. Let X=(x,
X5,....,xy) denote an image with N pixels to be
partitioned into c¢ clusters, where Xx; represents
multispectral data. The algorithm is an iterative
optimization that minimizes the cost function, a
generalized least-squared errors function, defined as

follows:
N c
J:Z;Z”;

2

==l

€)

where u; represents the membership of pixel x;in the i"
cluster, z; is the i™ cluster centre, || || is a norm metric,
and m is a constant. The parameter m controls the
fuzziness of the resulting partition, m: any real number
greater than 1, it was set to 2.00 by Bezdek (1981).
The membership function represents the probability
that a pixel belongs to a specific cluster. The cost
function is minimized when pixels close to the centroid
of their clusters are assigned high membership values,
and low membership values are assigned to pixels with
data far from the centroid. In the FCM algorithm, the
probability is dependent solely on the distance between
the pixel and each individual cluster centre in the
feature domain. The membership functions and cluster
centres are updated as follow:

1 “)

m—1

where:

)

The objective function of FCMI is shown as (3), and
the optimal cluster centres can be found by minimizing
(3). The centre of the i cluster is determined by (5).
Equation (4) is the membership function of x; being
assigned to the i” cluster. Convergence of FCM can be
detected by comparing the changes in the membership
function or the cluster centre at two successive
iteration steps.

Fitness computation: Two steps to accomplish the
fitness computation. First, the pixel dataset is clustered
according to the centres encoded in the chromosome
under consideration, such that each intensity value x;, i
=1,2, .., mx nis assigned to cluster with centre z;; =
1,2,.,K

158

Vol 9 No. 2 October 2015

£f||x£—zi||<||xi—zp||,p=1,2, ...... k,andp # j
(6)

The next step involves adjusting the values of the
cluster centres encoded in the chromosome, replacing
them by the mean points of the respective clusters. The
new centre z; for the cluster ¢; is given by:

(7

Subsequently, the clustering metric M is computed as
the sum of Euclidean distances of each point from their
respective cluster centres and given by:

(3)
i=1
where
T ) TR I
x,eC, ‘
The fitness function is defined as follow:
;o= (10)
M

Hence the objective is to minimize the clustering
metric M i.e. maximize f.

Selection: Fitness level is used to associate a
probability of selection with each individual
chromosome. Roulette Wheel selection was applied, if
f; is the fitness of individual ¢; in the population, its
probability of being selected is:

J, (11

>

N is the number of individuals in the population.

P =

Crossover and mutation: In this research, a two-point
crossover with a fixed crossover probability of uc is
used. Also, each chromosome undergoes mutation with
a fixed probability 0.05. A number ¢ in the range [0,
1] is generated with uniform distribution. If the value
at a gene position is v, after mutation it becomes:

vio*v,v=0

vEo, v=0

Termination criterion: for cach iteration, the fittest
chromosome is preserved elitism. Thus on termination,
this chromosome gives the best solution encountered
during the search. The algorithm is a two pass process.
In the first pass the standard FCM algorithm is used to
generate the population. In the second pass, the GAs
algorithm is applied on the population generated by the
FCM algorithm.
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Validity measure for clustering: In order to
determine the validity of the clustering on the given
dataset, the cluster validity index for the fittest
chromosome for a particular value of K is computed
using equation 12. The cluster validity index used in
this research is the one proposed by Turi (2001). It
aims at minimizing the validity index given by the
function as follow:

V=yx M (12)
Iinter

The term intra is the average of all the distances
between each pixel x and its cluster centroid z; which is

defined as:
. 1 &
intra=L 35 ez

i=1 xeC;

(13)

The inter term is the minimum distances between the
cluster centroids which is defined as:

(14)

. . 2
inter = mln(”zi -z, " ),

where i=1, 2... K-1 and j=i+1, 2... K. This term is used
to measure the separation of the clusters. Also, y is
given as:

y=c*N(2,1)+1 (15)
where c is a user specified parameter and N (2, 1) is a
Gaussian distribution function with mean 2 and
standard deviation 1, where the variable is the cluster
number and is given as:

N(u,0)=———e 2 (16)
270

where k is the cluster number and #=2 and o=1. This

validity measure serves the dual purpose of minimizing

the intra-cluster spread and maximizing the inter-

cluster distance.

3.4 Classifier combinations

Application of a multiple classifier system (MCS) in
remote sensing has been discussed in detail in
Benediktsson et al. (2007). The limitation of LIDAR
data on hand in Egypt motivated the authors to
combine the results obtained for RGB/KMGA and
RGB/FCMGA in order to take advantage of each
classifier and improve the overall accuracy. In this
research, the RGB/KMGA and RGB/FCMGA were
combined according to their reliability for each class.
The class that receives the maximum Kappa Index of
Agreement (KIA) is taken as the final classification.
As a result, there are a number of possible overlapped
pixels that could take place in the combined results.
Most overlaps occur at the edges of classes. In order to
compensate for these errors, the overlapped areas are
compared and the class that receives the highest
overall KIA is taken as the final classification.
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3.5 Accuracy assessment

Accuracy assessments of the proposed system were
undertaken using confusion matrices and Kappa
statistics. The KIA is a statistical measure adapted for
accuracy assessment in the remote sensing field by
Congalton and Roy (1983). KIA is a means to test two
images, if their differences are due to 'chance' or 'real
disagreement'. It is often used to check for accuracy of
classified images versus some 'real' ground-truth data.

k= NZ;] Xii ‘Z,; (X, *X,)

i (17
NZ _21:1 (XH *X+i)

7. number of row in cross classification table,
X; number of combinations along the diagonal,
X;+ : total observations in row i,

x4; : total observations in column i,

N : total number of cells.

For the per-category-KAPPA, the following algorithm
was introduced to remote sensing by Rosenfield and
Fitzpatrick-Lins (1986):

F,-P.P,
kt = (18)
})H- - E+R—i

pii ‘proportion of units agreeing in row i/ column i
i+ :proportion of units for expected chance agreement
in row i
P+ ‘proportion of units for expected chance agreement
in column i

3.6 Test description and workflow

In this research, a maximum chromosome length of
K,..c=8 was chosen, which is above the maximum
number of clusters in the test image (Yang et al.,
2006). Only two-point crossover operations were
considered with fixed probability (Dunn, 1974; Chen
and Lin, 2007). The other parameters were chosen to
be 100 for population size, 0.8 for crossover
probability (Yang et al., 2006) and 0.05 for mutation
probability (Dunn, 1974; Pham and Karaboga, 2000;
Kim and Kim, 2003). In this regard, three groups of
data sources, as shown in Table 3, were tested and
evaluated. First, the KMI as a fitness function was used
and investigated. After that, the FCMI was tested and
applied with GAs as a fitness function. Finally, an
approach was proposed to combine the results from
both KMGA and FCMGA. Figure 2 summarizes the
workflow for the proposed techniques.

Table 3: Groups of dataset applied for the
experiments

Group 1 | Group 2 | Group 3
-RGB
-RGB -DSM.
-RGB -DSM - Intensity
- polymorphic texture strength
from nDSM
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Figure 2: Workflow for image classification by
image and LIDAR data fusion

4. Results and discussion

For the purpose of testing the efficiency of KMGA and
FCMGA, the proposed algorithms have been applied
to each of the three groups of data. Visual results from
KMGA and FCMGA for the three groups of data are
shown in Figure 3 and numerically expressed in
figures 4 to 7.

Column 1 of Figure 3 illustrates the KMGA results
while column 2 of the same figure shows the FCMGA
results. Moreover, a close watch of Figures 3 reveals
that both the approaches are able to yield the distinct
clusters but the clusters determined by the FCMGA
algorithm are found to be more compact compared to
those provided by the KMGA algorithm. The
performances of KMGA have been compared to those
of FCMGA, in terms of the overall accuracy and their
class-accuracy values which are discussed below.

4.1 Overall KIA

The results indicate a clear dependence on the range of
input data included in the tests. Using only aerial
images, many buildings were classified as roads
because they have the same spectral reflectance and the
class-accuracies were low. Using the aerial image and
the LIDAR data increased the classification accuracy
due to the suitability of LIDAR data for accurately
detecting planar features, but still some errors occurred
due to the poor horizontal accuracy of edge detection
in the LIDAR data. The use of the aerial image,
LIDAR data and extracted attributes increased the
classification accuracy further since the attributes
compensated for the weakness of LIDAR for edge
detection.
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sroupl/KAMGA

sroupd/KAGA

Figure 3: Classifications results. The colours
indicate the different classes: Black stands for
roads, dark Green for trees, light green for Grass
and Red for buildings.

FCMGA was very stable in all situations achieving
higher classification accuracy (fig. 4). The results also
indicate the ability of the FCMGA to take advantage of
the input data. The FCMGA outperformed the KMGA
for the three groups of data. In the case of FCMGA,
group three has yielded the best set of classes with
87.84% overall accuracy. One important note is that
the results obtained for FCMGA improved when the
elevation data was incorporated into the classification
process. Once again, the results improved when the
spectral attributes were applied.

Overall Kappa
100

% —
80

70 <
R 60 ’-’/’\
50

~
40
Groupl Group2 Group3
|==KM 60.31 70.2 45.82
f-I-FCM 74.7 78.54 87.84

Figure 4: Overall Kappa results obtained for
KMGA and FCMGA

On the other hand, the results obtained for KMGA
improve when the elevation data are applied, and
deteriorate suddenly to 45.82% when the spectral
attributes are added. In this case, only two instead of
four classes are clearly found. These results indicate
that KMGA is inappropriate for real data sets in which
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there are no definite boundaries between the clusters.
Therefore, the authors believe that the poor
performance of KMGA was not a result of any
inadequate learning process of the algorithm but due to
its own structure. This conforms to results obtained in
Yang et al. (2008). They concluded that KMI seems to
be unsuitable for the use in unsupervised classification
of multi spectral image.

4.2 Per-class accuracy

An additional measure, per-class Kappa, was used to
evaluate the performance of the two models. Unlike
overall Kappa, per-class Kappa clearly shows how
much the performance of the proposed method
improves or deteriorates for each individual class. An
assessment of the per-class Kappa confirms that the
FCMGA performed the best in most cases as shown in
Figures 5 to 7. Another advantage of the FCMGA over
KMGA is that the achieved per-class Kappa errors are
less variable.

In the case of RGB data, most of the per-class Kappa
improved by the FCMGA. Whereas the application of
FCMGA resulted in average per-class Kappa of
75.18%, the application of KMGA resulted in average
of 60.29%. The roads class had the greatest increase
from 42.6% using the KMGA to 76.36% with the
FCMGA. Another advantage of the FCMGA over
KMGA is that the achieved errors are less variable as
shown in Figure 5. Whereas the application of
FCMGA resulted in standard deviation of 6.37 for per-
class Kappa, the application of KMGA resulted in a
SD of 5.80.

In the case of RGB/LIDAR data, most of the per-class
Kappa is improved by the FCMGA. Whereas the
application of FCMGA resulted in average per-class
Kappa of 81.68%, the application of KMGA resulted
in average of 72.68%. The trees class had the greatest
increase from 53.43% using the KMGA to 64.09%
with the FCMGA. To the contrary, there was a
decrease in per-class Kappa for the grass class from
98.93% using the KMGA to 97.86% with the FCMGA.
However, those classes are still classified with
relatively high per-class Kappa. Another advantage of
the FCMGA over KMGA is that the achieved errors
are less variable as shown in Figure 6. Whereas the
application of FCMGA resulted in standard deviation
of 17.59 for per-class Kappa, the application of
KMGA resulted in a SD of 19.25.

In the case of RGB/LIDAR/Attributes data, most of the
per-class Kappa is improved by the FCMGA. Whereas
the application of FCMGA resulted in average per-
class Kappa of 87.92%, the application of KMGA
resulted in average of 60.96%. The grass class had the
greatest increase from 28.58% using the KMGA to
89.06% with the FCMGA. Another advantage of the
FCMGA over KMGA is that the achieved errors are
less variable shown in Figure 7. Whereas the
application of FCMGA resulted in standard deviation
of 4.41 for per-class Kappa, the application of KMGA
resulted in a SD of 13.56.
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Per-class KIA for Group 1
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Figure 5: Per-class Kappa results obtained for
KMGA and FCMGA in case of RGB dataset (B:
Building; G: Grass; R: Roads; and T: trees)

per-class KIA for case 2
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~B-FCM| 9927 97.86 |  78.52 64.09

Figure 6: Per-class Kappa results obtained for
KMGA and FCMGA in case of RGB/LIDAR
dataset (B: Building; G: Grass; R: Roads; and T:
trees)

per-class KIA for case 3
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Figure 7: Per-class Kappa results obtained for
KMGA and FCMGA in case of
RGB/DSM/Intensity/nDSM/polymorphic  texture
strength dataset (B: Building; G: Grass; R: Roads;
and T: trees)

4.3 Combined results

The improvement in overall Kappa achieved by the
combination method compared with the KMGA and
FCMGA was determined as shown in Figure 8. It is
clear that the overall performances of the combined
method are better than those of the KMGA and
FCMGA. It can be seen that a considerable amount of
the misclassified pixels have been recovered by the
combined classification process. It can be concluded
that the application of the combination process results
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in the most significant improvement in classification
accuracy. The strengths of each classifier have
compensated for the weaknesses of the other. In
general fusing KMGA and FCMGA improve
classification accuracies. This demonstrates the benefit
of combining different sensor sources at different
classification levels.

Some of the per-class Kappa is improved by the
combination method. Whereas the application of
KMGA and FCMGA resulted in average per-class
Kappa of 75.18% and 60.29% respectively, the
application of the combined method resulted in
average of 77.69%. The grass class had the greatest
increase from 71.84% using the FCMGA to 99.84%
with the combined method. To the contrary, there was
a decrease in per-class Kappa for the roads and trees
classes from 76.36% and 68.61% for roads and trees
respectively, using the FCMGA, to 58% and 64.41%
with the combined method. As a result, the achieved
errors are more variable. Whereas the application of
FCMGA resulted in standard deviation of 4.41 for per-
class Kappa, the application of the combined method
resulted in a SD of 13.56. However, no patterns can be
derived that demonstrate that a certain classifier is
better for a particular class. If a particular class is very
important, FCMGA, KMGA and the combined results
should be tested to select the best result for that class in
a given study area. In general, the results indicate that
the FCMGA is a more appropriate mapping technique
for high resolution imagery. On the other hand, the
KMGA method is still an unsatisfactory one to classify
high resolution images.

KIA for the Proposed Combination Method

100
90
2 L
< 70
B0 -
50
a0
KIA | B ¢ | R | T
KM 60.31 | 54.49 | 7897 | 42.6 | 66.08
—m-FCM 747 | 8155 | 7184 | 76.36 | 68.81
—#~Combined Methed| 82,49 | 90.96 | 99,84 | 58 | 67.41

Figure 8: Overall and results

obtained RGB dataset

per-class Kappa

The visual interpretation of the final classification
result clearly shows a relatively high degree of noise in
the KMGA and FCMGA results. In contrast to this, the
classification that is based on the combined process
appears more homogenous. Within the main land cover
classes, some pixels in the aerial image are
misclassified, whereas these pixels are correctly
classified by the combination process. Figure 9, which
is an enlarged portion from Figure 3, is a typical
example showing the results from the KMGA classifier
in Figure 9(b), FCMGA in Figure 9(c), and the
combined results in Figure 9(d). The misclassified
pixels are corrected and the noise is significantly
reduced by the combined process. This clearly

162

Vol 9 No. 2 October 2015

illustrates the different and complementary information
provided by the two classifiers.

-

Figure 9: (a) Aerial Image, (b) Classification results
of the KMGA; (c) classification results of the
FCMGA; (d) Error correction after applying the
fusion algorithm

5. Conclusions

This paper presented a GAs-based approach for
unsupervised image classification. Experimental
results were obtained by classifying a high resolution
scene for a part of the region surrounding the
University of New South Wales campus, Sydney
Australia, depicting four different classes, namely
buildings, roads, trees and grass. The study tried to
optimize and validate GAs for unsupervised
classification of high resolution digital imagery and
LIDAR data. Two techniques have been applied:
KMGA; and FCMGA. Also, the results obtained for
both techniques were combined in order to improve the
accuracy. Compared with the reference data, the results
were evaluated based on a variety of criteria which
includes visual inspection and the K-HAT statistics.
Three groups of data were tested and evaluated. RGB
dataset resulted in overall kappa of 60.31% in the case
of KMGA, and 74.70% in the case of FCMGA.
RGB/DSM introduced overall kappa of 70.20% in the
case of KMGA, and 78.54% in the case of FCMGA.
RGB/DSM/Intensity/nDSM/polymorphic texture
strength achieved overall accuracy of 45.82% in the
case KMGA, and 87.84% in the case of FCMGA. The
combination of RGB/KMGA and RGB/FCMGA has
improved the results and resulted in overall kappa of
82.49%. On the basis of the results drawn by this
experiment it may be safely stated that the FCMGA
outperformed the KMGA. In the future it is planned to
process more and larger scenes and data sources in
order to confirm the results found so far.
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