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Abstract: Fuzzy approaches are being adopted for supervised digital classification of remote sensing images. However,
the use of fuzzy classification methods is restricted when compared to hard classification methods in producing land
use/land cover maps from remote sensing images. The major barrier for the wider adoption of fuzzy classifications is
the difficulty in evaluating the classification accuracy, as the conventional measures of accuracy are not appropriate for
such classifications. To overcome this barrier, many measures of soft classification accuracy have been developed. In
this paper, two measures viz., fuzzy similarity measure and fuzzy certainty measure have been used for assessing the
quality of a fuzzy classification . Fuzzy c- means classification was applied to a synthetic data set to derive fuzzy
membership values. The derived fuzzy membership values and the corresponding fuzzy reference data were used to
compute the values of fuzzy similarity measure and fuzzy certainty measure for each of the classes considered in the
classification. The results indicated that the two measures estimate the values differently and fuzzy certainty measure

resembles measure of goodness of fit used in statistical models.
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1. Introduction

Remote sensing from satellite based sensors provides
synoptic views of the earth surface at regular time
intervals, and has been considered as an attractive
source of data acquisition. Transformation of observed
remote sensing data in the form of spectral responses
into thematic classes representing earth surface
features is achieved by a number of image
classification procedures. The use of fuzzy
classification to produce accurate and reliable land
cover maps is gaining importance due to its continuous
nature of class representation. Fuzzy classification is a
quantitative, iterative method for classifying thematic
classes as continuous over geographic space. Fuzzy
classification approaches aim to estimate the
proportions of specific classes that occur within each
pixel. The output of fuzzy or soft classifiers is a
number of fraction images, one for each land cover
class which describe the class composition. The
fraction images representing ‘soft’ output may be
derived using techniques such as fuzzy c-means
clustering (Bezdek et al., 1984), linecar mixture
modeling (Settle and Drake, 1993), artificial neural
networks (Foody, 1996) and possibilistic c-means
clustering (Foody, 2000). Support vector machines
(Brown et al., 2000; Varshney and Arora, 2004) have
also been used to unmix the class composition within a
pixel. Of these, fuzzy c-means algorithm is the one
which has been wused extensively for fuzzy
classification in a range of applications.

Generally, the land use/ land cover map produced from
remotely sensed data using the approaches mentioned
above, may not exactly match the real ground
situations due to various reasons including
classification procedures, landscape characteristics,
sensor resolution and spectral overlap. This
discrepancy between the classified image and the real
ground situation is a key concern for the utility of such
data in many applications. For this reason, it is
essential that the quality of image classification has to
be assessed.

Quality of a fuzzy classification in terms of accuracy
can be evaluated by the measures such as entropy
(Maselli et al., 1994), Euclidean distance (Foody,
1996), L1 distance (Foody and Arora, 1996), cross
entropy (Foody, 1995), measures of information
closeness (Foody, 1996) and correlation coefficients
(Maselli et al., 1996). The entropy as an accuracy
measure is appropriate when the classification is fuzzy
and the reference data are crisp (Shalan et al., 2003).
The correlation coefficients are used to represent the
accuracy of individual classes only. Higher values of
correlation coefficient indicate better classification
accuracy. Rest of the measures are useful when a
fuzzy classification is evaluated with fuzzy reference
data. However, the results obtained from these
measures are generally not easy to interpret (Ricotta,
2004) as these are indicating the accuracy of
classification indirectly. Lower the values of entropy/
cross entropy/ L1 distance and measures of
information closeness, higher will be the accuracy.
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Binaghi et al. (1999) proposed a method that used
fuzzy set theory to extend the applicability of
conventional error matrix method to evaluate fuzzy
classification accuracy in the form of a fuzzy error
matrix. The fuzzy error matrix was designed for those
situations in which classification and/or reference data
are expressed in multi membership form as well as
crisp form. The formulae for fuzzy error matrix and
accompanying accuracy measures depend on the type
of sampling design used to collect the reference data
and should be used carefully (Stehman et al., 2007). In
spite of its sound theoretical basis, the fuzzy error
matrix has generally not been accepted as a standard
accuracy measure to report the accuracy of fuzzy
classification (Silvan-Cardenas and Wang, 2008). Laba
et al. (2002) utilised the concept of fuzzy operators
(Gopal and Woodcock, 1994) to evaluate the accuracy
of regional scale land cover maps produced from
remote sensing data. The results showed that the
assessment of fuzzy classification using fuzzy
operators led to an improvement in map accuracy by
about 19% to 23%.

A set of measures based on fuzzy similarity concept
(Jager and Benz, 2000) have been used to evaluate
accuracy of fuzzy classification and fuzzy reference
data. The advantage of these measures is that they can
be applied when either classification or reference data
is hard. If both classification and reference data are
hard, they often reduce to conventional error matrix
based measures. Other approaches to evaluate the
accuracy of fuzzy classification include fuzzy set based
operators (Woodcock and Gopal, 2000), Renyi’s
generalized entropy function (Ricotta and Avena,
2002) and generalized Morisita’s index (Ricotta,
2004), sub-pixel fractional error matrix (Latifovic and
Olthof, 2004), probabilistic similarity index (Ricotta,
2004), concept of multi level agreement (Tran et al.,
2005), cross comparison matrix (Pontius and Cheuk,
2006), fuzzy error matrix in the absence of ground data
(Okeke and Karnieli, 2006), fuzzy certainty measure
(Schiewe and Gahler, 2008) and sub-pixel confusion-
uncertainty matrix (Silvan-Cardenas and Wang,
2008). A new family of overall accuracy, user’s and
producer’s accuracies was also proposed by Gomez et
al. (2008).

The main objective of this paper is to apply fuzzy
certainty measure proposed by Schiewe and Gahler
(2006) and a fuzzy similarity measure proposed by
Jager and Benz (2000) to assess the quality of a fuzzy
classification. A comparison of results obtained from
these two measures is also made. Such a comparative
evaluation of two measures may help in understanding
their behaviour and relative efficacies. For the purpose,
class membership values derived from fuzzy —c means
classification of a synthetic image data is used. This
paper is organized into four sections. The next section
briefly discusses the measures of quality used in the
present study. Section 3 describes fuzzy classification
of experimental data and the result of classification. In
Section 4, assessment of the quality of classification
using two measures adopted has been provided.
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Finally, summary and conclusions are provided in
Section 5.

2. Description of measures of quality

2.1 Measure of similarity

The main idea of fuzzy classification approach is to
associate a pixel with every class considered in the
classification scheme, with variable degree of class
memberships. Partial class membership values derived
from fuzzy classification can serve as baseline
information to assess the quality of classification in
terms of accuracy and uncertainties. Accuracy of a
fuzzy classification can be assessed by constructing
fuzzy error matrix and deriving the measures such as
user’s, producer’s and overall accuracy (Binaghi ef al.,
1999). Here, we provide the mathematical formulation
for deriving the overall accuracy of a pixel in the
context of fuzzy error matrix. The elements in the
fuzzy error matrix are derived by using “MIN”
operator introduced in the theory of fuzzy sets. Each
value of u(C);; is compared with the values of u(R); for
all /= 1,2,...N and the minimum of the two is assigned
its corresponding position in the error matrix. The
major diagonal elements d(u;) in the matrix that are
used to estimate overall accuracy are computed as

d( wi) = L u(R);; ™ u(C)i} (1)

where, u(R);; and u(C);; are the proportions of i-th class
in j-th pixel in fuzzy reference and fuzzy classification,

fori=1,2...N

The ‘SUM’ of the major diagonal elements divided by
the total grades of membership in the reference
data/classification data, when the condition of
orthogonality holds represents the overall accuracy
(O4;;) of that pixel (equation (2)). The overall accuracy
thus obtained may be interpreted as a measure of the
total match between the reference and classification
data. This total match is dependent on ‘MIN” operator
used to obtain degree of matching for individual
classes.

04;; = i‘u(R)ﬁ/\’u(C)ﬁ

Other way of measuring the accuracy of classification
is to measure the similarity between a fuzzy
classification and fuzzy reference by considering the
similarity between the corresponding fuzzy sets. This
has been demonstrated by Jager and Benz (2000) by
defining a fuzzy similarity measure which is a
mapping s: [0,17% x [0,17% — [0,1] assigning two fuzzy
sets R ,C e [0,17% a “degree of similarity’ S(R,C) ¢ [0,1]
subject to conditions

2

S S(R,R)=1 for every fuzzy set R
(S52) S(R,C)y= S(C,R) for all fuzzy sets R,C
(S3) SR, D) < S (RC) ~ S (C, D)

whenever R < C < D.
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Here, condition (S7) states that if R and C are equal ,
there exists maximum similarity, (S2) states the
symmetry and (S3) states that if C lies between R and
D, then the degree of similarity of R to D is at most
equal to both the degrees of similarity of R to C and C
to D. And, for a fuzzy reference R = { R;......... Ry}
and fuzzy classification C = { Cj......... Cy}, with a
fuzzy similarity measure S, fuzzy overall accuracy
(FOA) is defined as

(FOoA4), =
3)

S ([Croee.... Cal,

Although, four different measures of similarity were
proposed by Jager and Benz(2000), we are providing
the measure of similarity used in this study as,

N
2[R=C

(FOA), =1-— = @
E(Rji v Cji)

2.2 Fuzzy certainty measure
To consider the influence of the reference data and to
indicate the quality of classification procedure,
Schiewe and Gahler (2006) proposed a new
characteristic value, the Fuzzy Certainty Measure
FCM(c) per class ¢ as follows.

FCM(c) = 1- nl Ef:ﬂ#my (c) —
Hicrass (¢ )l ®)

Viluirer > OV picrass >0
with:

urer (€): membership value of a pixel (or region) for
class c in reference data

Hcrass (¢): membership value of a pixel (or region) for
class ¢ in classification result

n: number of pixels (or regions) under consideration

The value of FCM(c) varies between 0 and 1. Higher
values of FCM(c) indicate larger coincidence between
the reference and the classification. In the present
work, fuzzy similarity measure (Eq. 4) and fuzzy
certainty measure (Eq. 5) have been adopted to assess
the quality of a fuzzy classification.

3. Application example

In remote sensing image processing domain, to
understand the factors contributing to classification
errors and isolating them for further analysis through
empirical studies, the use of real image data is needed.
Such empirical studies might require the use of real
data at different resolutions, varied spectral
characteristics and sufficient proportion of mixed
pixels with desired 'within class variability' and
'boundary effect'. However, availability of real data
with desired characteristics and other difficulties may
limit the scope of these studies. In such cases, it may
be advantageous to use synthetic image data with
desired and controlled spectral characteristics. In this
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study, a synthetic image resembling real remote
sensing images has been used.

The mean and variance covariance values derived from
a set of pure pixels in four different classes of a typical
Landsat Enhanced Thematic Mapper Plus (ETM+)
image have been adopted to generate synthetic images
in six spectral bands assuming that each class follows
normal distribution (Ganesh Prasad, 2015). The size of
the synthetic images has been kept as 200 x 200 pixels
for computational convenience. The class proportion
vector for pixels in synthetic image is designed in such
a way that these show varying degrees of class
mixtures in different regions of the image. Figure 1
shows the proportions used to mix the spectral
responses of four hypothetical classes of interest.

Class 1 Class 2
(0.5, 05, 0.0
(1,0,0,0) Mixed region (0,1,0,00
Pure Pure
region Mixed region Mixed region region
(0.5,0.3,0,0.2) (0.3.0.5.0.2.0)
{0.25,0.25,
0.25,025)
Highly
mixed
Class 4 region Class 3
(0,0,0,1) (0.3,0,0.2,0.5) (0,0.2,05,03) {0,0,1,00
Mixed region Mixed region
Pure Pure
region region
(0,0, 0.5, 0.5)
Mixed region

Figure 1: Proportion values of each class for
synthetic data generation

Figure 2:

False colour composite image used for
classification
(Red: band 5, Green: band 3, Blue: band 2)

On the basis of univariate statistical properties of
individual class in each spectral band, it was found that
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the generated synthetic images are consistent with the
actual remote sensing data acquired in a region, where
classes are generally mixed and overlapping. The data
consists of about 45% of mixed pixels, which
contribute to the aspects of classification quality to a
large extent. From the transformed divergence analysis
conducted on all the six bands in synthetic dataset, a
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TD value of 2000 was obtained for the combination of
band 2 (0.52-0.6 um), band 3 (0.63-0.69 um) and band
5 (1.55-1.75 pm ). Therefore, these three bands were
used as input into the classifier selected for deriving
class membership values. Figure 2 shows the false
colour composite (FCC) image considered for the
study.

(a) Soft Reference Image of Class 1

(b) Soft Reference Image of Class 2

(c) Soft Reference Image of Class 3

(d) Soft Reference Image of Class 4

N I O o

Pixel value 1

0.5 0.3 0.25 0

Figure 3: Soft reference images of each class

The actual class proportion values (Figure 1) used to
generate synthetic images have been further used to
create soft reference images for each class. The class
proportion values for each pixel in all the regions have
been named as soft reference data and are represented
as fraction images for each class (Figure 3).

Fuzzy c-means classifier described by Bezdek et al.
(1984) was adopted to produce a soft classification of
the study image. This algorithm has proven especially
popular (Legleiter and Goodchild, 2005; Bastin, 1997,
Wu and Yang 2002; Yang et al., 2003) and has been
used to produce land cover maps from remotely sensed
data (Zhang and Stuart, 2001). In most situations the
fuzzy c-means classifier may be advantageous (Shalan
et al., 2003) as it is not dependent on the data
distributional ~ assumptions. The fuzzy c-means
classifier is based on an iterative clustering algorithm
which partitions pixels in the image into class
proportions. Although, it is an unsupervised classifier
(Bezdek et al., 1984), it may be used in supervised
mode (Foody, 2000). The formulation of fuzzy c-
means classifier contains a weighting factor m, which

describes the degree of fuzziness to be introduced in
the classification. The value of m varies from 1 (no
fuzziness or hard classification) to o (complete
fuzziness). A value in the range of 1.5 to 3 may
generally be adopted (Shalan et al., 2003). Through
several experiments, a value of m=2.0 was found to
be suitable for the classification of this dataset. The
number of training samples were kept as 200 for each
of the classes and were selected in the pure regions.

The results of the classification were four fraction
images (Figure 4) corresponding to four classes
considered in the experiment. In Figure 4, bright pixels
indicate higher class membership values. And, darker
pixels correspond to lower values of class membership.
On visual comparison of these fraction images with the
corresponding fraction images from soft reference
data, deviation of the derived membership values from
the reference can be observed. For example, this
deviation is more in classes 1, 2 and 4 than in the class
3, which implies that these three classes (1, 2 and 4)
may be more uncertain than the other (class 3).
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(a) Fraction image for class 1

(b) Fraction image for class 2

(c) Fraction image for class 3

(d) Fraction image for class 4

Figure 4: Fraction images derived from fuzzy classification

4. Result and discussion

Since the experimental data set had varied spectral
characteristics and sufficient proportion of mixed
pixels with desired 'within class variability' and
'boundary effect', the result of the classification was
satisfactory, though not excellent. When, the accuracy
of classification was estimated using fuzzy error matrix

approach, the overall accuracy of classification was
found to be 68.4%.
Table 1: Values of measures of classification quality
derived from fuzzy membership values of
classification and reference
Class | Measure of Fuzzy Goodness
Similarity certainty of fit
measure
1 68.04 % 80.40 % 80.20 %
2 66.36 % 83.10 % 82.90 %
3 7731 % 89.45 % 89.20 %
4 61.79 % 84.50 % 84.30 %

To quantify classification quality using the measure of
similarity (Eq. 4) and fuzzy certainty measure (Eq. 5),
the derived fuzzy membership values in each of the
classes and the corresponding reference data have been
used as input to computational models. Values of the

quality indicators used in the present study have been
computed class wise for better understanding of the
performance of the individual measure considered. The
results (in %) for individual classes are presented in
Table 1.

From table 1, it is observed that the quality of
classification for class 3 appears to be better than other
three classes. Both the measures are indicating the
same with the higher values (77.31% and 89.45%)
when compared to other values. However, in the case
of class 4, the value of the measure of similarity is the
lowest, while the fuzzy certainty measure has produced
the lowest value for class 1. The values estimated by
fuzzy certainty measure for all the four classes appears
to be high indicating good match between the
classification and the reference. This may not be the
true case as the overall accuracy of this classification
as estimated from fuzzy error matrix is only 68.4%.
And, the producer's accuracy values for the classes 1,
2, 3 and 4 were found to be 36.7%, 36.7%, 43.4%, and
43.6% respectively. Further, the fraction images from
classification and reference were defuzzified and kappa
index of agreement values for all the four classes were
determined as 0.4372, 0.4197, 0.8428 and 0.5738
respectively. Therefore, it seems that the values
estimated by the measure of similarity are reasonable,
when compared to those from fuzzy certainty measure.
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Further, In order to assess the appropriateness of the
two measures considered a Goodness of Fit measure
(G) widely used in statistical regressions has been
computed. This Goodness of Fit (G) may be defined as
scaled absolute difference and is given by,

|I! iREF —Mi.cLASS| 6)
MAX{|pi reF —HicLass|}

Goodness of fit (G) =1 —

The numerator term in Eq. (6) produces a positive
value and the denominator in Eq.(6) is a scaling factor
such that the G values for a pixel lie between zero and
one.

This measure has been used to compare fraction
images from fuzzy classification and soft reference
data on pixel by pixel basis. The minimum value for G
is zero, which indicates complete mismatch between
two data sets, a G value of 1 indicates 100% matching
between the two. Values of G for all the four classes
are also shown in table 1. By observing the values of G
and the values of fuzzy certainty measure in table 1, it
is evident that the fuzzy certainty measure is
estimating values almost identical to those from
goodness of fit measure.

Fuzzy error matrix based measures use "MIN' operator
to obtain the cardinality of fuzzy set intersection which
provide global values. It is to be noted here that, it is
not possible to derive producer's or user's accuracy
from fuzzy similarity measures, the reason being that
both of them are not symmetrical (Jager and Benz,
2000). Fuzzy similarity measure used in this study also
uses the similar operator and hence able to produce
reasonable values as in the case of fuzzy error matrix
based measures. While fuzzy certainty measure is
typically behaving like a statistical measure which
summarizes the discrepancy between the classification
and the reference values and may be considered as
another facet of goodness of fit. One must be careful in
using such goodness of fit measures and two issues
must be considered. First, there are inherent errors in
the classification results and in the reference data also.
Secondly, the effect of lower membership values in the
classification in predicting the overall goodness of fit
which may be very high in such cases.

To provide information on quality of classification at
pixel level, the measures used in this study require
information from the reference data at the same scale.
Availability of error free soft reference data or creation
of such data is another problem. Very often the soft
reference data may be from another classification
based on another data set. Thus, the error-prone or
dubious reference data may also have an impact on the
assessment of quality using fuzzy set based accuracy
or similarity measures. Often, accuracy metrics alone
would not be sufficient to infer about the quality.
Therefore, methods  which  complement the
conventional accuracy  measures are required to
represent the quality of classification at pixel scale.
Few studies have used confidence as a measure of
classification quality (Mclver and Friedl, 2001; Liu et
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al., 2004; Ganesh Prasad and Arora, 2014). In the
absence of fuzzy reference data, the quality of a fuzzy
classification can be estimated by using a simple
measure of confidence proposed by Ganesh Prasad and
Arora (2014). In recent years, impetus has been placed
on assessment of uncertainty in spatial data particularly
in remote sensing derived land use-land cover maps
and seems to be a rapidly growing research area.
Uncertainty as a quality assessment tool has become a
key subject in remote sensing studies and has attracted
attention of many researchers. Presenting uncertainty
information in addition to global values of
classification accuracy may provide enhanced quality
information to the users in assessing the fitness for use
of maps derived from image classification.

5. Summary and conclusions

The use of soft classifications to produce accurate and
reliable land cover maps is gaining momentum and
therefore, there is a need to adopt a suitable measure
which can indicate the overall quality of a fuzzy
classification at the pixel level. Many measures for
evaluating the quality of fuzzy classification based on
distances, fuzzy error matrix and fuzzy similarity
measures have been proposed. However, none of
these measures have been accepted as a universal
measure for evaluating the quality of a fuzzy
classification with fuzzy reference data. Many users of
thematic maps derived from remotely sensed data may
be benefited by providing quality information at the
pixel level. The present study aimed at applying two
measures viz., fuzzy similarity measure and fuzzy
certainty measure for assessing the quality of a fuzzy
classification. Fuzzy c¢ means classification was
applied to a synthetic data set to derive fuzzy
membership values. The derived fuzzy membership
values and the corresponding fuzzy reference data
were used to compute the values of fuzzy similarity
measure and fuzzy certainty measure for each of the
classes. The results indicated that the two measures
estimate the values differently. However, fuzzy
certainty measure produced values identical to those
from a simple measure of goodness of fit used in
statistical regression.

The users of thematic maps derived from fuzzy
classification of remotely sensed data may  get
benefited with the information regarding the quality of
classification. However, the availability of error free
fuzzy reference data plays an important role in
evaluating the quality of soft classification in terms of
accuracy and similarity. Therefore, it would be
beneficial to users, if the quality of soft classification is
reported not only in terms of accuracy, but with
supplementary information provided by appropriate
classification uncertainty and confidence measures.
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