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Abstract: The RFM has been considered as a generic sensor model. Compared to the widely used polynomial models, 

RFM is essentially a more generic and expressive form. Utilizing the RFM to replace physical sensor models in 

photogrammetric mapping is becoming a standard way for economical and fast mapping from high-resolution imagery. 

This model uses the Rational Polynomial Coefficients (RPCs) supplied with the images, since IKONOS precise sensor 

and orbit parameters are not released by the satellite company. This paper presents three mathematical models for 

performance enhancement of RFM using IKONOS stereo satellite images, namely: 1) Bias-corrected image space; 2) 

Bias-corrected RPCs; and 3) Bias-corrected ground space. The three models were tested and compared with the well- 

known 3D-Affine and Direct Linear Transformation (DLT) models. The Least Squares Method (LSM) was applied to 

implement the different mathematical setups for estimating the correction parameters. Attained results show that the 

accuracies of the five models are slightly variant. With five GCPs, an accuracy of 0.8 m in X, 1.2 m in Y, and 1.3 m in 

height is achieved using the bias corrected image space and an accuracy of 0.9 m in X, 1 m in Y, and 1.6 m in height is 

reached using the bias corrected RPCs. On the other hand, the results indicate the effectiveness of 3D-Affine and DLT 

models especially when the RPCs and/or commercial software packages are not available for users. 
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1. Introduction  

 

With the current growth in demand for high resolution 

satellite imagery (HRSI), great efforts have been made in 

natural hazards monitoring, resource management, change 

detection, planning, 3D shoreline extraction, DTM 

(Digital Terrain Model) and DSM (Digital Surface Model) 

generation (Poon et al., 2005; Xu et al., 2005; Di et al., 

2003). A critical issue is the choice of a sensor model for 

HRSI to acquire high-accuracy 3D-reconstruction. In 

general, sensor models can be grouped into two classes, 

physical sensor models and generic sensor models. 

Physical sensor models are more rigorous and normally 

provide better accuracies since the model parameters 

employed represent the physical imaging process of 

sensors. However, building such physical sensor models 

requires information of the physical sensor and its imaging 

model. This information includes focal length, principal 

point location, pixel size, lens distortions and orientation 

parameters of the image. Collinear equations are rigorous 

models available for frame and push-broom sensors 

(Vincent and Yong, 2000). It is realized that this 

information is not always available, especially for images 

from commercial satellites. The generic sensor models are 

independent on sensor platforms as well as sensor types. 

Such properties have made generic sensor models very 

popular in the remote sensing community. The typical 

generic sensor models are polynomial-based ones (Vincent 

and Yong, 2000; Vincent and Yong, 2002). In terms of 

accuracy and computational stability, the bias 

compensation method (Fraser and Hanley, 2003) so far 

appears to be the best method and has been widely used 

(Fraser and Hanley, 2003, 2005; Hu et al., 2004). 

However, this method is effective only when the camera 

field of view (FOV) is narrow and the position and attitude 

errors are small (Grodecki and Dial, 2003).  

 

Fraser and Hanley (2003) developed a method for the 

removal of exterior orientation biases in RPCs of IKONOS 

imagery. They found that only bias corrected RPCs of 

IKONOS is capable of generating accurate results with just 

one ground control point. Fraser and Hanley (2005) 

recognized the notable positioning accuracy attained with 

the RPC bundle adjustment with bias compensation. 

Furthermore, Fraser et al. (2006) gave an overview of the 

RPC model for high resolution satellite imagery, and 

highlighted the accuracy potential of RPC block 

adjustment. It has been demonstrated that bias 

compensated RPC block adjustment can yield sub-pixel 

positioning accuracy and highly accurate Ortho-images 

and digital surface models. Similar results were reported 

in Tong et al. (2010), which presented the two schemes: 

RPCs modification; and RPCs regeneration for orientation 

bias correction based on Quick-Bird stereo images in 

Shanghai. Four cases of bias correction were tested 

including: shift bias correction, shift and drift bias 

correction, affine model bias correction, and second-order 

polynomial bias correction. A least squares adjustment 

method is adopted for correction parameter estimation. 

The modified RPCs improve the accuracy from 23 m to 3 

m in planimetry and from 17 m to 4 m in height. With the 

shift and drift bias correction method, the regenerated 

RPCs achieved a further improved positioning accuracy of 

0.6 m in planimetry and 1 m in height with minimal two 

GCPs. The Rational Function Model (RFM) based on 

Rational Polynomial Coefficients (RPCs) is one of the 

generic models in use in place of rigorous models (Volpe 

and Rossi, 2003). After a rigorous sensor bundle 

adjustment is performed, multiple evenly distributed 

image/object grid points can be generated and used as 

ground control points (GCPs). Then, the RPCs are 
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calculated by these GCPs (Di et al., 2003). A least-squares 

method is used to estimate the RFM coefficients (RPCs) 

from a three-dimensional pseudo grid of points and 

orientation parameters. The RPCs are usually provided by 

imagery vendors of IKONOS, Quick-Bird, CARTOSAT – 

1 etc. and were utilized for transformation from image to 

object space coordinates in a geographic reference system. 

Since sensor orientation is directly observed, there would 

be some systematic error in orientation parameters. Thus 

the refinement of RFM is required (Wu et al., 2008). In 

most studies mentioned above, biases in the image space 

or in the object space were modelled and corrected to 

refine RPCs-derived ground coordinates, while the 

original RPCs remained unchanged. Few studies were 

conducted to take the original set of coefficients from the 

RPC model and add new adjustable functions for both line 

and sample to the normal equations based on the known 

GCPs (Singh et al., 2008). For IKONOS stereo images, the 

sensor physical parameters are derived from the satellite 

ephemeris and attitude data without using GCPs. The 

satellite ephemeris data are determined using on-board 

Global Positioning System (GPS) receivers and 

sophisticated ground processing of the GPS data. The 

satellite attitude is determined by optimally combining star 

tracker data with measurements taken by the on-board 

gyros. Since the IKONOS satellite imagery vendor, Space 

Imaging Company, has not released the satellite ephemeris 

data, no physical mathematical model can be established. 

This causes a major problem in the process of geo-

positioning from KONOS stereo imagery with high 

precision. Therefore, some generalized generic 

mathematical models are needed to substitute the physical 

models for IKONOS imagery restitution (Hu et al., 2004). 

 

This paper deals with the biases in the RPC mapping due 

to the errors in sensor orientation. The performance of 

bias-corrected image space, bias-corrected RPCs and bias-

corrected object space will be further investigated with 

IKONOS stereo-pair imagery. The main objective is to 

find the best set of parameters with least number of GCPs 

for RFM refinement. The models described in this paper 

were implemented through a prototype software developed 

by the authors in a Matlab environment. In addition, 3D 

Affine and DLT models are also applied and their 

accuracies are investigated for 3D positioning, compared 

with traditional and modified RFM. 

 

The steps for RFM refinement using IKONOS stereo-pair 

imagery are similar to that using other types of stereo 

satellite images, which consist of, shown in figure 1. 

 

- Affixing a set of distinct ground control and check points 

in the overlap area of the test image pair. The coordinates 

of those points are determined precisely by using static 

GPS positioning technique. 

- Measuring the image coordinates of affixed control 

points in each of the two images of the test pair. 

- Extracting the RPCs provided with the metadata files 

associated with the test image pair. 

- Performing least-squares adjustment involving the 

provided RPCs and measured image coordinates of 

control points based on RFM as a mathematical model to 

get estimated coordinates of the control points. 

- Assessing the accuracy of provided RPCs by computing 

the differences among measured and estimated 

coordinates of control points. 

- Modelling biases are provided in RPCs by adding 

parameters to the traditional RFM , using different setups 

and different control configurations. 

- Resolving the modified versions of RFM using least-

squares method to get estimates for the added parameters 

associated with each version. 

- Assessing the accuracy of modified RFM associated with 

each version by computing the differences among 

measured values of check points and their corresponding 

values estimated by the modified RFM. 

 

 
      Figure 1: The strategy of developing the RF model 
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2. Mathematical models  

 

2.1 Rational Function Model (RFM) 

The RFM is one of the generic models that uses a ratio of 

two polynomial functions to compute the x and y 

coordinate in the image. The validation of this model has 

been tested in several researches with aerial photography 

data and satellite imageries (Tao et al., 2000). It takes the 

following general form (OGC, 1999): 
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Polynomial functions included in the model can be 

expressed as: 
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Where: 

 ln, and sn are the normalized line and sample coordinates 

in the image space. Xn,, Yn, and Zn are the normalized 

geodetic longitude, latitude and height in the object space. 

ai, bi, ci and di are the polynomial coefficients RPCs (Total 

of 80). i, j and k are the increment values. m1, m2, m3, n1, 

n2, n3: are the order of the polynomial model (0-3), where 

i + j + k ≤ 3. The normalization of the coordinates is 

computed by (OGC, 1999): 
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Where Line and Sample are the image coordinates. 

Line_OFF and Sample_OFF are the offset values for the 

two image coordinates. Line_Scale and Sample_Scale are 

the scale factors for the two image coordinates. Similarly, 

𝝋, 𝝀, and h are the geodetic latitude, longitude, and height 

in the object space. Lat_OFF, Long_OFF, and 

Height_OFF are the offset values for the three ground 

coordinates. Lat_Scale, Long_Scale, and Height_Scale are 

the corresponding scale factors. 

 

2.1.1 3D-reconstruction using RFM 

3D-reconstruction using various sensor models is one of 

the most important steps in accuracy assessment and 

enhancement of RPCs from IKONOS stereo-pair imagery. 

3D-reconstruction could be achieved using the vendor-

supplied RPCs. To assess the accuracy and bias 

distribution of the results using the raw RPCs, all the 

ground points (GPs) were used as check points (ChkPs). 

From the coordinates (ln, sn) in Equation (1), the following 

four equations can be derived for left (L) and right image 

(R): 
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Because of non-linearity of the equation and by applying 

the Taylor series expansion, the following equations are 

obtained (Grodecki et al., 2003): 
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The equations can be described in a matrix form as follow 

(Ghilani and Wolf, 2006). 
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The partial derivatives can be calculated similar to what 

follows (Xu et al., 2005): 

3



Journal of Geomatics                                                            Vol 12 No. 1 April 2018 

1
0 1 1 4 4 5 5

7 7 10 10

2 2

11 11 12 12

2

13 13 14 14

17 17

( ) ( ) ( ) Z

2( ) X ( ) Y Z

3( ) X ( ) Y

( ) Z 2( ) X Y

2( ) X Z (8)

L nL L L nL L n L nL L n

n

L nL L n L nL L n n

L nL L n L nL L n

L nL L n L nL L n n

L nL L n n

F
a l b a l b Y a l b

X

a l b a l b

a l b a l b

a l b a l b

a l b


     



   

   

   

 

 

The full set of unknowns in Equation (7) can be resolved 

by using the least squares adjustment method as follow: 
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Where A is a (4*No. of GPs) * (3*No. of GPs) matrix. X 

is a (3*No. of GPs)* (1) unknown vector. B is a matrix of 

observations (4*No. of GPs) * (4*No. of GPs). V is the 

vector of residual errors (4*No. of GPs)* (1). K is an 

(4*No. of GPs) * (1) Absolute vector. (No. of GPs) is the 

number of ground control points selected by the user. The 

unknown object space coordinates are solved for 

iteratively. At the first iteration, initial values for 

coordinates are needed, which could be determined 

through linear equations such as 3D-Affine or DLT model. 

 

2.2 RPCs refinement methods  

The RPCs may be refined directly or indirectly. Direct 

refining methods calculate the RPCs and thus requires a 

large number (more than 39) of GCPs for the 3rd order 

RFM, while indirect refining methods introduce 

complementary transformations in image or object space, 

and do not change the original RPCs directly (Hu et al., 

2004). In this research, indirect method is adopted using 

three different approaches, as described in the following 

subsections. 

 

2.2.1 Bias-corrected image space 

This bias correction method proposes a polynomial model 

defined in image space, in which Δl and Δs are added to 

the rational functions to capture the differences between 

the nominal and the measured image space coordinates 

(Fraser and Hanley, 2003; Grodecki and Dial, 2003). The 

following equations provide the form of the refined RFM 

using first order polynomials transformation (Hanley and 

Fraser, 2004): 
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Where l and s are line and sample coordinates; Δl and Δs 

represent the differences between the measured and the 

calculated line and sample coordinates, which can be 

generally described as polynomials of the image line and 

sample coordinates as follows (Grodecki and Dial, 2003; 

Gong and Fritsch, 2016): 
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Where Ai and Bi (i = 1, 2, 3, …) are the correction 

parameters. By using affine transformation, sub-pixel 

accuracy can be obtained (Fraser and Hanley, 2003. 

However, the method is effective only when the camera 

FOV is narrow and the position and attitude errors are 

small (Grodecki and Dial, 2003). 

In view of the high-order dynamic characteristic of the 

IKONOS sensor, three comparative choices of correction 

parameters are tested in this research: 1) A0, A1, B0, B1 

which models the shift and scale; 2) A0, A1, A2, B0, B1, B2 

which models the bias using the entire transformation 

model; 3) A0 ≈ A5, B0 ≈ B5 which models the bias using 

second-order polynomials. This model is used to check 

whether distinct high order errors exist in IKONOS 

imaging orientation. 

 

With an adequate provision of GCPs, the correction 

parameters are estimated by using the LSM. First, using 

the original vendor provided RPCs and measured object 

coordinates of control points based on RFM as a 

mathematical model to get the calculated image space (lc, 

sc) potentially containing inherent biases. The calculated 

image coordinates are compared with the measured image 

coordinates (lm, sm) to obtain the residuals (∆l, ∆s). After 

that, the correction parameters are further computed based 

on the discrepancies on all the image control points using 

the LSM. For clarity, assume that 4 GCPs exist for the 

affine parameter estimation. The observation equations 

(AX + BV = K) can be described in a matrix form as 

follow; 
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The six affine parameters in Equation (12) can be resolved 

by using the LSM, described in Equation (9). If the shift 

and scale bias [A0, A1, B0, and B1] are the only factors taken 

into account, the correction can be made by improving the 

original RPCs. As detailed in Fraser and Hanley (2003 and 

2005), only the parameters in numerator need to be 

updated, and the refined RPC model becomes: 
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Where ai, bi, ci, and di are the original vendor-provided 

RPCs, ∆ln and ∆sn are the normalized values of the image 

shift and scale bias parameters ∆l and ∆s. 

 

Effectively, all original terms in the numerator of each 

expression in Equation (11) are modified; each coefficient 

ai is replaced by (ai−bi ∆ln). In this way, the vendor-

supplied RPCs can be replaced using the method 

mentioned above. The bias inside the initial RPCs could be 

corrected. This would be much more convenient for some 

digital photogrammetric software packages such as 

IMAGINE Photogrammetry, which only support the use 

of RPCs to do the 3D-reconstruction of IKONOS imagery 

(Xu et al., 2005). Figure 2 shows the 3D-reconstruction 

steps when using updated RPCs: 

 

 
Figure 2: Steps of 3D-reconstruction using updated 

RPCs 

 

2.2.2 Bias-corrected RPCs  

This approach is implemented by adding a set of new 

adjustable functions ΔN (numerator coefficient) and ΔD 

(denominator coefficient) for both line and sample 

equations based on the known GCPs to correct the RPCs 

(Singh et al., 2008). The new adjustable functions can be 

defined as follows: 
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ΔP1, ΔP2, ΔP3, and ΔP4 are the differences between the 

original and the adjustable, which can be generally 

described as (Singh et al., 2008): 
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Ai, Bi, Ci and Di are the correction parameters in the 

correction model. The resulted estimates of correction 

parameters are added to the original coefficients to get 

refined RPCs. The correction parameters are further 

computed based on the control points using the LSM. For 

clarity, assume that 3 GCPs are used for estimation of the 

shift parameters (A0, B0, C0, and D0) for both left and right 

images. As a result, 12 observation equations in 8 

unknowns are yielded. They can be described as in 

Equation (17). The unknown shift parameters can be 

resolved by using the LSM, utilizing Equation (9). 
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Where 1, 2, and 3 in a matrix form are the number of 

control points. 

 

2.2.3 Bias-corrected ground space 

A polynomial model defined in the domain of object space 

to correct the ground coordinates derived from the vendor-

provided RPCs as in Equation (18) (Di et al., 2003; Zhen 

Xiong and Yun Zhang, 2009). In this method, the 

polynomial correction parameters are determined by the 

GCPs as follows: 
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0 1 2 3
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Where XGPS, YGPS, ZGPS are the observed ground 

coordinates; XRF, YRF, ZRF are the ground coordinates 

derived from the RPC; and ai, bi, ci are the correction 

parameters.  

 

2.3 Affine model 

Since 2D Polynomial models do not take into account the 

heights of the GCPs, these models can be efficiently used 

when the image is not influenced by the topographic 

effects. In this case, low order polynomials can provide 

accurate results. The model can be represented as follow: 
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Where x, y are the image coordinates; X, Y are the 2D 

ground coordinates; and a0, a1, a2, b0, b1, b2 are polynomial 

coefficients. Some studies have shown that the use of low-

order polynomial 3D models for images of hilly and 

mountainous areas can reach the accuracy level that is 

close to the rigorous models (Fraser et al., 1999). A typical 

formula can be expressed as follow: 
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Where X, Y, Z are the 3D ground coordinates. 

 

2.4 Direct Linear Transformation (DLT) model 

The DLT model was developed by Abdel Aziz and Karara 

(1971) for close range photogrammetry applications and 

can also be used for image rectification (Vincent and 

Yong, 2000). The DLT represents a special case of the RF 

Model, with first degree polynomials and common 

denominators: 
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Where x, y are the image coordinates; X, Y, Z are the 

ground coordinates; and L1, L2, L3, L4, L5, L6, L7, L8, L9, 

L10 and L11 are polynomial coefficients. 

 

3. Study area and dataset 

A Pan-sharpened stereo pair of IKONOS imagery, for an 

area in the north of Khartoum in Sudan about 16 km north 

of Omdurman city is obtained by the Edge Pro Company. 

The study area covers almost 5.8 km x 5.3 km. It includes 

various topographic features, urban area, hilly terrain and 

a part of Wadi Sayidna Air Base as shown in figure 3. It 
was the first stereo pair of IKONOS images acquired over 

Sudan in December 27, 2003. The data are delivered in 

Geo-Tiff format with text files containing the rational 

polynomial coefficients (RPCs) for each image. Table 1 

shows the main parameters of the stereo-pairs. 

 

A set of 21 well-identified and well distributed points on 

the images were selected. Mostly corners of buildings and 

fences/walls as well as road intersections were selected 

and surveyed using GPS in a static mode with about 5 mm 

accuracy. Leica Geo-office software was used to process 

the data with survey positions being referenced to the 

UTM/WGS84 zone 36N. Corresponding image 

coordinates on both the left and right image of the stereo-

pair were measured in the IMAGINE photogrammetry 

software. Figure 4 shows the distribution of the GPS 

points; GCP environment in red and ChkPs in green. 

 
Figure 3: Stereo IKONOS image for the study area 

 

Table 1: Main parameters of the available IKONOS 

HRSI 1 m stereo-pair 

Acquisition Date / 

Time 

08:41 GMT 27-12-2003 and 

08:42 GMT 27-12-2003 

Sun Angle Azimuth 156.1241 and156.3809 degrees 

Sun Angle Elevation 63.50707 and 47.50945 degrees 

Overlap 99% 

Rows 5893 and 6004 pixels 

Columns 5351 and 5357 pixels 

Pixel Size 1.000 meters 

Percent Component 

Cloud Cover 0 

 
 

 
Figure 4: GCPs and ChkPs distribution 

 

4. Results and analysis 
 

Several experiments were performed to apply the 

described mathematical models. Before testing and 

evaluating those models, the accuracy of the acquired 

IKONOS images was checked by locating the twenty one 

GCPs on the images, estimating their ground coordinates 

using RFM and comparing estimated coordinates to 

known coordinates. The results show that the RMS value 

of differences in X, Y and Z were 7.2 m, 3.1 m, and 16.7 

m respectively. 
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4.1 Performance evaluation of RFM  

In the first experiment, the 3D-reconstruction has been 

achieved using the vendor-supplied RPCs. To assess the 

accuracy and bias distribution of the results using the raw 

RPCs, all the 21 ground points were used as ChkPs. The 

RMS value of differences between known and estimated 

coordinates were calculated and listed in table 2 which 

significantly indicate the existence of large shift bias. 

Figure 5 shows the planimetric and vertical accuracies at 

ChkPs based on vendor-supplied RPCs and figure 6 shows 

bias vectors of left and right image at the same points.  
 

Table 2: RMS value for ChkPs using RPCs without 

GCPs  

Statistic  

RMS of check points 

coordinate differences (meters) 

∆X ∆Y ∆Z 

RMS 7.2 3.1 16.7 

 

 

 
Figure 5: Bias vectors of (a) planimetry and (b) 

elevation at ChkPs based on vendor-supplied RPCs 

 

4.2 Bias-corrected image space 

The refined RFM in image space was applied using the 

IKONOS stereo images. Tables 3, 4 and 5 list the RMS 

value for the 18 ChkPs in the object space, which 

implement the refined model with polynomial 

transformation and different numbers of GCPs. Compared 

with the case without any GCPs, the results are 

significantly improved. It is clear that increasing the GCPs 

from 3 to 17 points does not improve much the accuracy. 

Therefore, five control points were sufficient to 

compensate for the shift and scale bias correction. Detailed 

discussions on the result of each correction model are 

given below: 

 

4.2.1 Modelling with shift and scale 

In shift and scale bias correction with all GCPs being 

employed (A0, A1, B0, B1), the biases in the object space 

are listed in table 3. To be more circumspect, the 1st order 

and 2nd order polynomials for the bias correction were 

further examined. 

 

 

 
Figure 6: Bias vectors of (a) left and (b) right image at 

ChkPs, calculated using vendor-supplied RPCs 
 

 

Table 3: RMS value of ChkPs using different selection 

of GCPs with shift and scale bias correction model 

No. of 

GCPs/ChkPs 

RMS of check points coordinate 

differences (meters)  

X Y Z 

3/18 2.4 1.0 1.2 

5/16 0.9 1.0 1.6 

7/14 0.9 0.9 1.7 

9/12 1.0 1.0 1.8 

13/8 0.3 1.0 1.5 

15/6 0.3 0.6 1.5 

17/4 0.3 0.6 1.2 

 

 

4.2.2 Modelling with 1st order polynomial 

In this experiment, with A0, A1, A2, B0, B1, and B2 

unknown parameters, the regenerated RPCs were found to 

be of slightly higher quality which indicates that there was 

a little additional distortion error absorbed by scale 

parameters. With a minimum of five GCPs, an accuracy of 

0.8 m in X, 1.2 m in Y and 1.3 m in height has been 

achieved. The biases in the ground space are listed in table 

4. 
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Table 4: RMS value of ChkPs using different selection 

of GCPs with 1st order bias correction model 

No. of 

GCPs/ChkPs 

RMS of check points coordinate 

differences (meters)  

X Y Z 

5/16 0.8 1.2 1.3 

7/14 0.8 1.1 1.5 

9/12 0.8 1.2 1.6 

13/8 0.2 1.2 1.2 

15/6 0.2 1.0 1.2 

17/4 0.2 0.9 0.9 
 

4.2.3 Modelling with 2nd order polynomial 

To further test the effect of the GCPs distribution and 

parameters selection (A0 ≈ A5, B0 ≈ B5), seven GCPs were 

used to calculate the bias coefficients. In this case, one 

redundant point is available, which will make the 

calculation more reliable. From table 5, the results 

generated under the control of seven GCPs show some 

differences from their counter parts in tables 3 and 4. 

Results in this test are of slightly lower quality than the 

former two tests. Consequently, only few GCPs are needed 

in the bias correction in the image space.   
 

Table 5: RMS value of ChkPs using different selection 

of GCPs with 2nd order bias correction model 

No. of 

GCPs/ChkPs 

RMS of check points coordinate 

differences (meters) 

X Y Z 

7/14 1.2 1.3 2.1 

9/12 1.2 1.5 2.2 

13/8 0.4 1.3 1.5 

15/6 0.3 1.1 1.3 

17/4 0.2 1.2 1.0 
 

4.3 Bias-corrected RPCs 

The third experiment was to improve the geo-location 

accuracy of IKONOS stereo-pair in the object space based 

on the bias corrected RPCs with different bias correction 

models and different control configurations. In this regard, 

the bias correction parameters were first estimated by 

using the LSM with the GCPs, and the bias-corrected 

RPCs were subsequently obtained through the RPC 

modification. Afterwards, the geo-location accuracies with 

the refined RPCs were estimated by calculating the ChkPs 

biases on the ground through space intersection. Detailed 

discussions on the result of each correction model are 

given below. 
 

4.3.1 Modelling with one parameter 

The assessment for orientation using one parameter (A0, 

B0, C0, and D0) offers a simple way to improve the geo-

location accuracy. The results in table 6 indicate that when 

the shift-bias was removed through RPCs modification 

with only three GCPs, the accuracy of ground point 

determination was greatly improved from the 7.2 m to 2.3 

m in X, 3.1 m to 1.0 in Y and from 16.7 m to 1.2 m in 

height. However, additional GCPs contributed to the 

improvement of the planimetric accuracy. When the 17 

GCPs were employed, the overall metric potential was 0.7 

m in planimetry and about 1.2 m in height. Figure 7 is a 

typical example shows both the planimetric and height 

error based on 3 GCPs. As well, figure 9 indicates that the 

planimetric and vertical accuracies of the refined RPCs 

with a single parameter are accurate and stable. Under such 

an observation, the planimetric accuracy of the refined 

RPC is around one meter when using 13 to 17 GCPs. On 

the other hand, the vertical accuracy with 3 GCPs was 1.2 

meter with IKONOS data and it remains the same when 17 

GCPs were used.  

 

Table 6: RMS value of ChkPs using different selection 

of GCPs with one parameter bias correction model 

No. of 

GCPs/ChkPs 

RMS of check points coordinate 

differences (meters) 

X Y Z 

3/18 2.3 1.0 1.2 

5/16 0.9 1.0 1.6 

7/14 0.8 0.9 1.7 

9/12 0.9 1.0 1.8 

13/8 0.3 1.0 1.5 

15/6 0.3 0.6 1.5 

17/4 0.3 0.6 1.2 

 

 

 
Figure 7: Bias errors of (a) planimetry and (b) height 

at ChkPs using 3 GCPs and 1 parameter 

 

4.3.2 Modelling with two parameters 

To further test the effect of the GCP configuration, five 

GCPs were used to calculate the eight coefficients, A0, A1, 

B0, B1, C0, C1, D0, and D1. By using these five GCPs, one 

redundant point is available. From figure 8 and the RMS 

value on the ChkPs listed in table 7, it is clear that the use 

of five GCPs could also achieve very good results in bias 

removing. The RMS values are of the same order of 

magnitude as in the case of using three GCPs. Figure 9 

8



Journal of Geomatics                                                            Vol 12 No. 1 April 2018 

shows the planimetric and vertical accuracies of the 

refined RPCs with only two parameters. In essence, 1.4 

meter was the observed vertical accuracy when using five 

GCPs and 0.9 meter was achieved with 17 GCPs, which is 

not quite significant when compared with the results of the 

initial case. On the other hand, the planimetric accuracy 

yields 1.8 meter with 5 GCPs and 1.1 meter with 17 GCPs. 

 

Table 7: RMS value of ChkPs using different selection 

of GCPs with two parameters bias correction model 

No. of 

GCPs/ChkPs 

RMS of check points coordinate 

differences (meters) 

X Y Z 

5/16 1.2 1.4 1.4 

7/14 0.6 1.3 1.6 

9/12 0.7 1.4 1.7 

13/8 0.2 1.3 1.3 

15/6 0.2 1.1 1.2 

17/4 0.2 1.1 0.9 

 

 

 
 

Figure 8: Error vectors in (a) planimetry and (b) height 

of ChkPs using 5 GCPs and 2 parameters 

 

In the bias corrected RPCs, it was found that the results 

are getting worse with more parameters (modelling with 

three and four parameters). 

 

4.4 Bias-corrected object space 

The objective is to find out in which domain the bias 

compensation could achieve a better result with different 

bias correction models and different control information. 

For each model in object space, RFM based triangulation 

(Di et al., 2003; X. Niu et al., 2004) is applied to calculate 

the ground coordinates (XRF, YRF, ZRF). Since the GPS 

coordinates (XGPS, YGPS, ZGPS) are known, three equations 

can be established in accordance with the model equations 

in subsection (2.2.3). Using all available GCPs, over-

determined equation systems can be setup to compute the 

optimal estimates of the transformation parameters by a 

LSM. The transformation parameters can be used to 

compute the improved coordinates of other points. ChkPs 

are used to assess the appropriateness of the models. RMS 

value of each model is calculated based on differences 

between RFM derived and known coordinates of the 

ChkPs. 

 

 

 
 

 
 

Figure 9: Planimetric and vertical accuracy of object 

coordinates  

 

 

The shift parameters (a0, b0, c0) and three additional scale 

factors (a1, b1, c1) have been applied to correct for non-

homogeneous scale distortions. Minimum of two GCPs are 

required. An affine and a 2nd order polynomial 

transformation are applied to the second and third models, 

respectively.  

 

Additional GCPs are then added to improve accuracy. 

Different combinations of the number and configuration of 

GCPs are also tested to determine the effectiveness of 

different distributions. Tables 8, 9 and 10 show 

improvements in accuracy achieved by the three different 

models performed in the object space for IKONOS stereo-

pair imagery. A discussion of the results of each model is 

given below. 
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4.4.1 Modelling with shift and scale 

The scale and shift model has additional scaling factors in 

the coordinate axis directions (a0, b0, c0, a1, b1, c1). The 

experiment starts with three GCPs and in order to increase 

redundancy, more GCPs should be used. With nine evenly 

distributed GCPs, the result is improved. The RMS value 

is 1.7 m in X, 1.2 m in Y and 1.9 m in height. With 17 

GCPs, more consistent and better results were obtained. A 

RMS value of 1.2 m in X, 0.9 m in Y and 2 m in height 

were achieved. The RMS values are listed in table 8.  

 

Table 8: RMS value of ChkPs using different selection 

of GCPs with shift and scale bias correction model 

No. of 

GCPs/ChkPs 

RMS of check points coordinate 

differences (meters) 

X Y Z 

3/18 1.9 1.0 4.3 

5/16 1.8 1.2 3.3 

7/14 1.6 1.1 2.7 

9/12 1.7 1.2 1.9 

11/10 1.5 1.0 2.1 

13/8 1.5 1.2 2.0 

15/6 1.4 0.9 2.1 

17/4 1.2 0.9 2.0 

 

 

4.4.2 Modelling with 1st order polynomials  

The affine model, 1st order polynomials, offers the 

capability of considering affinity. However, the additional 

affine parameters and GCPs can generate an improvement 

over the result from the scale and shift model. From the 

RMS values listed in table 9, one can observe that the same 

accuracy level was achieved with modelling in the bias 

corrected image space with first order polynomial, see 

table 4. 

 

Table 9: RMS value of ChkPs using different selection 

of GCPs with 1st order bias correction model 

No. of 

GCPs/ChkPs 

RMS of check points coordinate 

differences (meters) 

X Y Z 

5/16 0.9 1.3 1.5 

7/14 0.7 1.1 1.5 

9/12 0.8 1.2 1.7 

11/10 0.8 1.0 1.8 

13/8 0.5 1.2 1.2 

15/6 0.4 1.0 1.2 

17/4 0.2 0.9 0.9 

 

4.4.3 Modelling with 2nd order polynomials 

The addition of the 2nd order parameters requires the use 

of a larger number of GCPs, at least 10 control points. With 

11 GCPs, no significant improvements are found in 

comparison to the other two models. In general, high-order 

polynomials are very sensitive and require a large number 

of GCPs. The 2nd order polynomial model does not exhibit 

convincing advantages over other models, see table 10. 

 

 

Table 10: RMS value of ChkPs using different 

selection of GCPs with 2nd order bias correction model 

No. of 

GCPs/ChkPs 

RMS of check points coordinate 

differences (meters) 

X Y Z 

11/10 4.6 2.2 2.9 

13/8 2.0 2.2 0.9 

15/6 1.3 3.2 0.9 

17/4 0.5 1.4 1.1 

 

4.5 3D-Affine model 

The 3D affine model transforms the 3D object space to 2D 

image space for scanners with a narrow AFOV. When 

modelling with the 3D 1st order polynomial model, 8 

coefficient values change for one image (A0, A1, A2, A3, B0, 

B1, B2, and B3), which requires a minimum of 4 points for 

the space resection. Four equations are derived for each 

GCP with just three unknowns X, Y and Z. Table 11 

summarizes the performances of the first order 3D-Affine 

model under different evenly distributed GCP and ChkPs 

combinations. When 5 GCPs are used, the 3D-Affine 

model produced an overall RMS value of 1.7 m in 

planimetry and 1.5 m in height. The RMS value reached 

the lowest RMS value when 17 GCPs were used, RMS 

values of 1.0 m in planimetry and 1.2 in height. 

 

Table 11: RMS value for ChkPs Using 3D-Affine 

Model for Stereo Images with 1st order polynomials 

No. of 

GCPs/ChkPs 

RMS of check points coordinate 

differences (meters) 

X Y Z 

5/16 1.0 1.4 1.5 

7/14 0.8 1.2 1.5 

9/12 0.8 1.2 1.6 

11/10 0.8 1.0 1.8 

13/8 0.5 1.2 1.3 

15/6 0.4 1.0 1.4 

17/4 0.2 0.9 1.2 

 

When modelling with the 3D 2nd order polynomial model, 

14 coefficient values change for one image which requires 

a minimum of 7 points for the space resection.   Table 12 

lists the results for different number of GCPs. One can 

observe that the results are improved as the number of 

GCPs is increased.  

 

Table 12: RMS value for ChkPs Using 3D-Affine 

Model for Stereo Images with 2nd order polynomials 

No. of 

GCPs/ChkPs 

RMS of check points coordinate 

differences (meters) 

X Y Z 

7/14 3.8 1.7 2.2 

9/12 2.7 1.6 2.3 

11/10 1.3 1.1 1.9 

13/8 1.8 1.4 2.0 

15/6 1.1 1.6 1.6 

17/4 1.0 1.2 1.1 
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4.6 DLT model 

As new sensors become operational with the new high 

resolution satellite imagery, their sensor modelling may 

still not be available immediately. For this reason, during 

this investigation the capabilities of the existing systems 

were tested using the DLT model. First, the image space 

and the ground space coordinates are used to calculate the 

respective DLT model parameter; L1, L2, L3, L4, L5, L6, L7, 

L8, L9, L10, and L11. This requires a minimum of 6 GCPs 

for the space resection. After that, check points were 

measured on each image for assessing the accuracy of the 

derived DLT parameters. 

 

Table 13 listed the RMS value of the ChkPs for the 

IKONOS stereo-pair imagery. The RMS values of the 

ground residuals were 1.8 m in X, 1.5 m in Y, and 2.1 m 

in height when 7 GCPs were used. On the other hand, RMS 

values of 1.2 m in X, 1.0 m in Y, and 1.1 in height were 

achieved with 17 GCPs. The results can be further 

improved if the image pixels are corrected for systematic 

errors.  

 

Table 13: RMS value for ChkPs Using DLT Model for 

Stereo Images 

No. of 

GCPs/ChkPs 

RMS of check points coordinate 

differences (meters) 

X Y Z 

7/14 1.8 1.5 2.1 

9/12 1.7 1.7 2.2 

11/10 1.6 1.8 2.4 

13/8 1.6 1.4 1.5 

15/6 1.8 1.4 1.4 

17/4 1.2 1.0 1.1 

 

5. Conclusions 

 

Based on the experimental results with IKONOS stereo-

pair images, several conclusions were made. The accuracy 

figures of the 3D-reconstruction using the vendor-supplied 

RPCs was 7 m in X, 3 m in Y, and 17 m in the Z direction. 

By applying five bias reduction models with a few number 

of GCPs, this bias can be compensated to around one meter 

level of accuracy. The experimentation results show that 

the accuracies of the used five models are slightly variant.  

With five GCPs, planimetric and vertical accuracies of 

better than 1.3 m and 1.6 m respectively, can be obtained 

using the bias-corrected RPCs and the bias corrected 

image space approaches. The bias corrected ground space 

is feasible for RPC refinement in the cases of using shift 

and scale model and the affine model. Among the simple 

geometric models, the 1st order 3D polynomial gives 

accuracies within 1 m in planimetry and 1.5 m in height. 

On the other hand, the 2nd order 3D polynomial model 

gives less accuracy figures. Regarding the DLT model, 

obtained accuracy numbers in X, Y, and Z direction are 

nearly one meter when using large number of control 

points. 
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