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Abstract: To improve on the accuracy of survey works, there is the need for proper adjustment of survey data.  

Adjustments and computations of survey field data has played a vital role in mathematical geodesy, it has been applied 

for the study of magnitude of errors and the determination of tolerance levels. Several studies have been carried out over 

the years in adjusting survey field data through the application of classical least squares techniques and other methods. 

With current increase in usage of GPS for most ground truth survey works, the need to adjust field data after post 

processing have not been taken seriously resulting in suspicion in the accuracy of final output of GPS surveyed data. This 

study evaluates and test alternative techniques in adjusting Differential Global Positioning System (DGPS) survey field 

data. Hence, the objective of this study was to explore the efficiency and performance of two artificial intelligence 

techniques namely, Back propagation Artificial Neural Network (BPANN), and Multivariate Adaptive Regression Spline 

(MARS) as a realistic alternative technique in adjusting DGPS survey field data. The study also compares the performance 

of BPANN and MARS models to two classical techniques namely: Ordinary Least Square (OLS) and Total Least Square 

(TLS). The statistical findings revealed that, BPANN, OLS, and TLS offered satisfactory results in adjusting the DGPS 

field data. Also, the MARS model compares to BPANN model showed better stability and more accurate results in 

adjusting the DGPS field data. In terms of their two-dimensional mean horizontal error, the BPANN model attained 

0.0654 m while MARS model achieved 0.0296 m as compared to OLS and TLS model which archived 3.3975E -06 m 

and 1.0027E-09 m respectively. This present study, can conclude that BPANN and MARS provides a promising 

alternative in the adjustment of DGPS survey field data for Cadastral and Topographic surveys.  
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1 Introduction 

 

Survey field measurements since generation are usually 

compromised with errors in field observations and needs 

to be adjusted using mathematical models (Okwuashi, 

2014). There are two types of survey measurements 

techniques namely, the direct technique and the indirect 

technique. The direct techniques are the actual collection 

of field data. Errors may be incorporated due to personal, 

the type of instrument used, and the type of survey 

techniques applied. Indirect techniques are the alternate 

techniques of achieving field data. In this technique, errors 

involve in the direct method may propagate into the 

indirect techniques (Ghilani and Wolf, 2014). Hence, the 

field data needs to be adjusted to minimize the errors using 

both survey techniques. 

 

Adjustments and computations studies have become 

obligatory in the field of mathematical geodesy, to study 

the magnitude of the errors whether these errors are 

acceptable and within tolerance limits (Ghilani and Wolf, 

2012). In the past centuries, the least squares mathematical 

regression models (LS) (Gauss, 1823) adjustment 

techniques was developed and have been applied in many 

fields. LS is the classical technique for adjusting surveying 

measurements (Okwuashi and Asuquo, 2012). The LS 

technique minimizes the sum of the squares of differences 

between the observation and the estimate (Bezrucka, 

2011). Various techniques utilized in the recent and past 

decades include, Kalman Filter (KF) (Kalman, 1960), 

Least Squares Collocation (LSC) (Moritz, 1978), and 

Total Least Square (TLS) (Golub and Van Loan, 1980; 

Akyilmaz, 2007; Annan et al., 2016a, 2016b). In this 

study, two classical techniques namely the ordinary least 

square (OLS) and total least square were adopted to assess 

the performance of two artificial intelligence techniques 

namely Multivariate Adaptive Regression Splines 

(MARS) and Backpropagation Neural Networks 

(BPANN) as an alternative technique in adjusting field 

data due to some defects with the classical methods. 

 

The Ordinary Least Square (OLS) have been the 

conventional techniques for adjusting surveying networks 

(Okwuashi and Eyoh, 2012). OLS only considers the 

observations equations to be stochastic (Acar et al., 2006) 

and adjust only the errors in the observation matrix to 

make the square of the sum of residuals minimum. Several 

researchers (Annan et al., 2016a; Ziggah et al., 2013) in 

the field of geoscientific studies have applied OLS to solve 

many scientific problems. The Total Least Square TLS) is 

a data modelling technique which can be used for many 

types of statistical analysis such as regression or 

classification. In the regression technique, both dependent 

and independent variables are measured with errors. 

Thereby, the TLS approach in statistics is sometimes 

called an errors-in-variables (EIV) modelling. Moreover, 

this type of regression is usually known as an orthogonal 

regression (Golub and Van Loan, 1989). The total least 

squares (TLS) was invented to resolve the working 

efficiency of the OLS (Annan et al., 2016a). The TLS can 

adjust the errors in both the observation matrix and design 

matrix (Acar et al., 2006) to yield a better estimate. 

Researchers such as (Acar et al., 2006; Annan et al., 

2016a, 2016b; Okwuashi and Eyoh, 2012) have applied 

TLS to solve many scientific problems and they concluded 

that, the TLS working efficiency is encouraging. For large 

sample properties of the TLS estimator, that is a strong and 

weak consistency, and an asymptote distribution. The 
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standard procedure for solving TLS problem involves the 

singular value decomposition (SVD) of the extended data 

matrix (Lemmerling et al., 1996). However, the SVD does 

not preserve the structure of the extended data matrix. This 

implies that the TLS approach will not yield the 

statistically optimal parameter vector in the frequently 

occurring case where the extended data matrix is 

structured (Golub and Van Loan, 1989). In view of this, 

MARS and BPANN were adopted to evaluate its 

efficiency and performance as an alternative adjustment 

technique for adjusting DGPS field measurement data. 

In the recent times, artificial neural network (ANN) has 

been widely adopted and applied to different areas of 

mathematical geodesy. Its suitability as an alternative 

technique to the classical methods of solving most 

geodetic problems has been duly investigated (Ziggah et 

al., 2016a). Some of the problems solved in mathematical 

geodesy include GPS height conversion (Fu and Liu, 2014; 

Liu et al., 2011), geodetic deformation modelling (Bao et 

al., 2011; Du et al., 2014), earth orientation parameter 

determination (Liao et al., 2012). ANN are being criticized 

for its long training process in achieving the optimal 

network’s topology, and it is not easy to identify the 

relative importance of potential input variables, and certain 

interpretive difficulties (Lee and Chen, 2005; Samui, 

2013). For this reason, the MARS model was also adopted. 

BPANN and MARS are both machine learning techniques. 

 

Multivariate Adaptive Regression Splines (MARS) is an 

adaptive modelling process invented by Friedman (1991) 

used for non-linear relationships. In addition, MARS 

divides the predictor variables into piece-wise linear 

segments to describe non-linear relationships between the 

predictor and the dependent variable (Leathwick et al., 

2005; Samui, 2013). There is limited availability of 

literature of MARS in survey field adjustment studies, but 

many studies have successfully applied MARS for solving 

different problems in engineering. Some of the areas of 

applications include estimating energy demand (Alreja et. 

al. 2015), slope stability analysis (Samui, 2013; Lall et al., 

1996). 

 

The existing knowledge and publications have not fully 

addressed the issue of applying alternative techniques in 

the adjustment of DGPS field data. In addition, upon 

careful review of existing studies, the authors realized that 

the utilization of the BPANN and MARS techniques have 

not been applied as a practical alternative technology to the 

existing approaches. This present study for the first time 

explored the utilization of the BPANN and MARS in the 

adjustment of DGPS data. To achieve the aim of this 

present study, the ANN and MARS methods were applied. 

This study also highlights the comparison between 

BPANN and MARS to two classical techniques namely 

the ordinary least square (OLS) and total least square 

(TLS). Each model was assesses based on statistical 

performance indicators such  

as mean horizontal error (MHE), mean square error 

(MSE), and standard deviation (SD). The statistical 

findings of these two models (BPANN and MARS) will 

reveal the working efficiency and performance of the 

models for adjustment of the DGPS data. Hence this study 

will serve as an added contribution to existing knowledge 

of ANN and MARS in mathematical geodesy. 

 

2 Resources and methods used 

 

The study area (Figure 1) is in the Southwest of Ghana 

with geographical coordinates between longitudes: 2 º 05 

´ 00 ʺ W, and 2 º 45 ´ 00 ʺ W; and latitude 4 º 55 ´ 00 ʺ N, 

and 5 º 30 ´ 00 ʺ N. The type of coordinate system used in 

the study area is the Ghana projected grid derived from the 

Transverse Mercator 1 º NW and the (WGS84) (UTM 

Zone 30N). 

 

 
Figure 1: Map of the Study Area 

 

In this study, a total of 53 DGPS data collected by field 

measurements around Esiama in the Elembelle District of 

the Western Region, Ghana-West Africa, were used in the 

model’s formulation. It is well acknowledged that, one of 

the contributing factors affecting the estimation accuracy 

of models is related to the quality of datasets used in 

model-building (Dreiseitl and Ohno-Machado, 2002; 

Ismail et al., 2012). Therefore, to ensure that the obtained 

field data from the GPS receivers are reliable, several 

factors such as checking of overhead obstruction, 

observation period, observation principles and techniques 

as suggested by many researchers (Yakubu and Kumi-

Boateng, 2011; Ziggah et al., 2016b) were performed on 

the field. In addition, all potential issues relating to DGPS 

survey work were also considered. Table 1 shows a sample 

of the data used to embark on this study. The differential 

(relative) was adopted in the collection of data due to its 

ability to adjust and compensate for errors in the baselines 

measurements. 

 

2.1 Methods 

2.1.1 Backpropagation Artificial Neural Network 

(BPANN) 

BPANN consist of three layers namely, the input layer, 

hidden layer and output layer. In BPANN model 

formulation, the dataset must be normalized. Before using 

the dataset for training, it was ensured that the dataset are 

free from systematic and gross errors, random errors are 

the only error in the data which follows a normal 

distribution. The data to be used for the BPANN training 

and its model formulation are expressed in different units 

with different physical meanings. Therefore, to ensure 

constant variation in the BPANN model, datasets are 

frequently normalized to a certain interval such as [-1, 1], 
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[0, 1] or other scaled criteria (Ziggah et al., 2016b). The 

selected input and output variables were normalized 

between the intervals [−1, 1] according to Equation 1 

denoted as (Muller and Hemond, 2013): 

 

   
 minmax

minminmax
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xx
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          (1)                             

where iy  represents the normalized data, ix  is the 

measured coordinates, while minx  and maxx  represent the 

minimum and maximum values of the measured 

coordinates with maxy  and miny  values set at 1 and -1, 

respectively. 

 

Table 1: Sample of data used for the study (Units in 

meters) 

Northings (m) Eastings (m) 

29516.8527 125559.5038 

29612.3465 125168.1490 

29695.5483 124868.5474 

29766.1450 124750.3910 

29774.2700 124741.4477 

29813.5507 124768.5206 

29786.7162 124619.4892 

29847.7689 124426.1192 

30133.1594 123937.8123 

30174.3410 123719.6955 

 

To find the optimum weight combination, the network was 

trained up using Bayesian Regularization learning 

algorithm. The datasets were divided into training (70 %) 

and testing (30 %). The input variables were the eastings 

and northings denoted as  
inputinput NE ,  and the output 

were the eastings and northings denoted as  
outputE  and 

 
outputN  respectively. The objective of training is to find 

the set of weights between the neurons that determine the 

global minimum of error function. The main function of 

the testing set is to evaluate the generalization ability of a 

trained network. Training is stopped when the error of the 

testing set starts to increase (Chakraborty and Goswani, 

2017). The coefficient of correlation (R) and the mean 

square error (MSE) are the main performance criteria 

indices that are often used to evaluate the prediction 

performance of ANN models. The MSE is represented by 

Equation (2) and R is represented by Equation (3) 

respectively as: 
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where i and   are the measured and predicted plane 

displacements from the BPNN model. 
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where jaiZ  and jpiZ  are the actual and predicted jZ  

values, respectively. jaZ  and jpZ  are the mean of actual 

and predicted jZ  values corresponding to N patterns. For 

a good model, the value of R should be close to one 

(Samui, 2013). 

 

2.2.2 Multivariate Adaptive Regression Splines (MARS) 

 

The MARS model is nonparametric (Friedman, 1991) and 

it works by dividing the variables into regions, producing 

each region a linear regression equation (Leathwick et al., 

2005). The general formula for the MARS model adopted 

in this study is given by Equation 4 as denoted by (Samui 

and Kurup, 2012): 
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Where, )(iy  is the dependent variable (measured data) 

predicted by the function )(xf , 0a  is a constant, and N  

is the number of terms, each of them formed by a 

coefficient n  and  xn  is an individual basis functions 

or a product of two or more basis functions. The MARS 

model was developed in two steps. In the first step (the 

forward algorithm), basis functions are presented to define 

Equation 4. Many basis functions are added in Equation 4 

to get a better estimate of the dependent value (Samui and 

Kim, 2012). The developed MARS may experience 

overfitting due to the large number of basis functions used 

(Friedman, 1991). To mitigate this problem, the second 

step that is the backward algorithm prevents overfitting by 

removing redundant basis functions from Equation 4. The 

MARS model adopts Generalized Cross-Validation 

(GCV) to delete the redundant basis functions (Samui and 

Kothari, 2012). The expression of GCV is given by 

Equation 5 written as (Craven and Wahba, 1979): 
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Where N  is the number of data and )(HC  is a 

complexity penalty that increases with the number of basis 

function (BFs) in the model and which is defined as 

denoted by Equation 6: 

 

dHhHC  )1()(                                      (6)                                                                                                                             
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Where d  is a penalty for each BFs included into the model 

and H  is the number of basis functions in Equation 4 

(Friedman, 1991; Samui and Kothari, 2012). In this 

present study, the salford predictive model software (SPM) 

was adopted to train the MARS model. This is because, the 

SPM software is designed to be highly accurate, ultra-fast 

analytics, and data mining platform for creating predictive, 

descriptive and analytical models from databases of any 

size (Anon., 2018). 

 

2.1.3 Ordinary Least Square (OLS) and Total Least Square 

(TLS) 

 

OLS is used to solve a system of over determined 

equations as given by Equation 7 as (Miller, 2006): 

 

LVLAX                                             (7) 

The solution by OLS is given by Equation 8: 

𝑋 = 𝑖𝑛𝑣(𝐴′ ∗ 𝑃𝐴) ∗ (𝐴′ ∗ 𝑃𝐿)               (8) 

 

The error vector LV  associated with the OLS is given by 

Equation 9 as (Schaffrin, 2006): 

 

LAXVL                                                 (9) 

TLS is a method of treating an over determined system of 

linear equations by solving for the unknown parameters, 

X̂ in Equation (10) (Golub and Van Loan, 1980) through 

the form: 

 

,ˆ)( XVAVL AL    ,)( nmArank      (10) 

 

Where VL and VA is the vector of errors in the observation 

and the data matrix. Both VL and VA are assumed to have 

independent and identical distributed rows with zero mean 

and equal variance (Felus and Schaffrin, 2005; Akyilmaz; 

2007). The TLS method is an iterative algorithm that 

minimizes the errors through a minimizing matrix  LA ˆ,ˆ . 

The iteration continues until any X̂  that satisfies 

LXA ˆˆˆ   becomes the TLS solution (Golub and Van 

Loan; 1980; Yanmin et al., 2011). The singular value 

decomposition (SVD) of the matrix  LA,  was used in 

solving the TLS problem. SVD is used to present  LA,  

through Equation (11) as denoted by: 
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the SVD, the solution for the TLS problem is finally given 

by Equation 12 as: 
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which belongs to the column space of Â , so X̂ solves the 

basic TLS problem. The corresponding TLS correction is 

expressed by Equation (13) by: 

 

     LALALA ˆˆ,ˆ,ˆ         (13) 

 

2.2 Models Performance Assessment 

To compare the results obtained from the BPANN, MARS, 

OLS and TLS model, the residuals computed between the 

measured coordinates and the adjusted coordinates were 

used. The statistic indicators used include the Mean 

Squared Error (MSE), Root Mean Square Error (RMSE), 

Horizontal Position Error (HE), Mean Horizontal Position 

Error (MHE) and Standard Deviation (SD). The 

mathematical expression for the various performance 

indices are given by Equations 14 to 17 respectively. 
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With reference to Equations (14) to (17), n is the total 

number of points, O  and P  are the measured coordinates 

and adjusted coordinates produced by the various methods 

applied. e represents the residuals between the existing and 

transformed projected grid coordinates and e is the mean 

value of the residuals. 

 

3 Results and discussions 

 

The Tansig and Purelin functions were used for both the 

hidden and output layer respectively. The optimal model 

in adjusting the DGPS data by the BPANN model was [2, 

1, 1] for the eastings and [2, 1, 1] for the northings. Thus, 

two inputs variables, one hidden neuron and one output 

variable respectively. In the MARS model formulations, 

20 basis functions were in the training and testing for 

adjusting the DGPS data. In terms of the eastings, 6 basis 

functions were used in the final model formulation. This 

implies that, 14 basis functions were removed during the 

backward training due to overfitting. For the northings, 4 

basis functions were used in the final model formulation. 

Table 2 shows the model performance for BPANN and 

MARS model and figure 2 represent the horizontal 

displacement graph by the BPANN and MARS model. It 

can be observed that the MARS model outperforms the 

BPANN model in adjusting the DGPS field data with 

better accuracy. The capabilities of MARS in achieving a 
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better result in this study as compare to BPANN may be 

due to its less time in training the dataset. The correlation 

coefficient (R) which shows how close the estimated 

values are to the measured values were approximately one. 

This implies there is a stronger correlation between the 

independent variables (input data) and dependent variables 

(output data). Hence, both models can be successfully used 

to adjust the DGPS field data. 

 

The basis functions used for the final model formulations 

by the MARS model is tabulated in table 3. Equation 18 

and Equation 19 is the optimal model equation in adjusting 

the eastings and northings by the MARS model 

respectively. 

 

 

 

Table 2: BPANN and MARS Model (Units in meters) 

MODEL BPANN MARS 

PCI MSE R MSE R 

Training 

Easting 

0.00290 0.99999 0.00023 0.99999 

Testing 

Easting 

0.00590 0.99998 0.00886 0.99990 

Training 

Northing 

0.00380 0.99999 4.4169 x 

10-6 

0.99999 

Testing 

Northing 

1.12620 0.99999 5.87177 

x 10-6 

0.99999 

 

 

 

 

 
Figure 2: Horizontal Shift Graph of MARS and BPANN Models 

 

Table 3: Basis Functions used by the MARS Model 

Eastings Northings 

);403194,0max(1  EBF  );9.97656,0max(1  NBF  

);417262,0max(6  EBF  );9.97656,0max(2 NBF   

);419430,0max(8  EBF  );5.92505,0max(3  NBF  

);3.89823,0max(10  NBF  ;3*)410677,0max(6 BFEBF   

);5.92505,0max(11  NBF   

);4.97226,0max(15  NBF   

 

1500678743.11100556173.11000601793.2

800659577.3600639746.41999992.0403194)(

BFeBFeBFe

BFeBFeBFiE




     (18) 

600400.130121672.421119.97656)( BFeBFeBFBFiN                         (19) 

The horizontal displacement graphs of the two classical 

techniques is represented by figure 3. From figure 3, it can 

be observed that the TLS outperforms the OLS technique 

due to its capabilities to model out both errors in the 

observation and design matrix. The OLS model only 

considers errors in the observation matrix and the 

remaining ones in the design matrix are considered as 

uncertainties. Table 4 shows the horizontal displacement 
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results by all the models. From table 4, it can be observed 

that the results achieved by TLS model was very 

encouraging as compared to the MARS, BPANN and OLS 

model which perform better but with less accuracy. Upon 

carefully analyzing the results, it was realized that the 

MARS model can be used as a realistic alternative 

technique to the classical least squares (OLS and TLS) in 

adjusting some survey field data due to its performance in 

achieving satisfactory result in this present study. The 

BPANN which is also a machine learning technique 

achieved a better result but with lesser accuracy. This 

implies that, the BPANN may not be an alternative 

adjustment technique to the classical techniques for the 

study area. The developed MARS equations given by 

Equation 15 and Equation 16 can be used for adjusting 

DGPS data for the study as an alternative technique to the 

classical methods

. 

 

Figure 3: Horizontal displacement graph by the OLS and TLS model 

 

Table 4: Horizontal displacement results by the models (Units in metres) 

PCI MHE MSE SD 

MARS 0.0296 0.0562 0.0039 

ANN 0.0654 0.0380 0.0344 

OLS 3.3975E-06 1.1547E-11 4.4329E-15 

TLS 1.0027E-09 1.0060E-18 6.0484E-22 

 

 

 

The mean horizontal error (MHE) graph by all the models 

is represented by figure 4 below. From the graph below, 

TLS, OLS, and MARS can use as an adjustment technique 

for the study area due to their minimum horizontal shift 

achieved in this study. 

 

 

Figure 4: Mean Square Error Graph of the Models 

 

4 Conclusions and recommendations 

 

Adjustments and computations studies of survey field data 

have become obligatory and common practice in 

mathematical geodesy to assess the magnitude of errors 

and to evaluate whether the errors are within acceptable 

tolerance. However, the existing knowledge has focus 

more on classical techniques in adjustment of survey data. 

In the area of DGPS data collection, little knowledge exist 

in terms of the use of artificial intelligence in adjusting 

field data post processed. 

 

Artificial intelligence has been applied in this study to 

adjust DGPS survey field data after the use of the classical 

least squares techniques. This study is the first time of 

utilizing artificial intelligence (BPANN and MARS) 

theoretically and practically on DGPS field data post 

processed. Machine learning techniques of BPANN and 

MARS have been presented in this study. 
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The statistical findings revealed that the BPANN, MARS, 

OLS and TLS offered satisfactory results in the adjustment 

of DGPS post processed data. However, MARS model 

showed superior stability and more accurate adjustment of 

the DGPS data compared to BPANN model. It can be 

therefore be proposed that the MARS model can be used 

as a realistic alternative technique considering certain 

degree of accuracies to the classical OLS and TLS models 

within the study area in adjusting DGPS post processed 

data. Based on the analysis of results achieved, the 

Eastings and Northings of the DGPS data can be 

incorporated into the MARS models to give a better 

estimate as the actual positioning of the ground control 

point. Therefore, this study does not only have a localized 

significance but will also open more scientific discourse 

into the applications of MARS techniques in solving some 

of the problems in mathematical geodesy within the 

geoscientific community. 
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