
Journal of Geomatics  Vol 12 No. 1 April 2018 

© Indian Society of Geomatics  

Evaluation of the performance of the fused product of Hyperion and RapidEye red edge 

bands in the context of classification accuracy 

 
        Ritu Anilkumar, Dibyajyoti Chutia, Jonali Goswami, Vikas Sharma and PLN Raju 

       North Eastern Space Applications Centre, Department of Space, Government of India 

 Umiam, Shillong, Meghalaya, India- 793103 

Email: ritu.anilkumar@nesac.gov.in, d.chutia@nesac.gov.in, 

jonali.goswami@gmail.com, vikashsharmamy@gmail.com, raju@nesac.gov.in 

 

(Received: Feb 07, 2018; final form: Apr 16, 2018) 

 

Abstract: Satellite images are characterized by a large number of features in spectral and spatial domain. However, due 

to SNR constraints, development of a high spatial resolution and spectral resolution sensor is challenging. Hence, fusion 

techniques were developed for incorporating the spatial characteristics from a high spatial resolution multispectral or 

panchromatic sensor and the spectral information from the hyperspectral sensor of low spatial resolution. Here, the fusion 

was achieved by utilizing the Gram-Schmidt orthogonalization procedure and classification was performed on the 

obtained high spatial and spectral resolution image and a case study over the Dhemaji and Lakhimpur districts of Assam, 

India was performed. Investigations were carried out utilizing the Hyperion image, RapidEye image, fused image and the 

Red Edge subsets of the Hyperion and fused data sets where a number of vegetation, water and land cover classes have 

been selected for three test sites. All comparisons were performed using standard supervised classifiers such as maximum 

likelihood classifier, spectral angle mapper and support vector machines with the polynomial and radial basis function 

kernel. RapidEye data classifies the scene best with the MLC classifier. SVM classifiers with RBF or polynomial kernels 

perform consistently better with Hyperion and fused data sets. Red Edge subsets of the Hyperion and fused images are 

observed to perform well with both MLC and SVM classifiers. 
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1. Introduction  

 

The economy of India is primarily agrarian with 56.3% of 

its population dependent upon agriculture as a source of 

income and 17.32% contribution to the GDP (Ministry of 

Statistics and Programme Implementation). Modern 

agriculture has seen rapid improvements starting with 

mechanization during the industrial revolution to 

manipulation of the genetic structure of the crop. 

Technological advancements in the form of accurate 

navigation systems and sophisticated satellite and airborne 

sensors have permitted large scale monitoring of 

agricultural structures. Over the last decade, space based 

instruments such as RapidEye, QuickBird, LandSat, 

CartoSat, Hyperion, Compact High Resolution Imaging 

Spectrometer/Proba (CHRIS/Proba) etc have gained much 

importance in precision agriculture. This is particularly 

reflected in the introduction of the Red Edge band in the 

sensors. Red Edge refers to the sharp increase in 

reflectance as observed in the vegetation spectrum beyond 

the red wavelengths, generally from 680-750 nm 

(Vogelmann, 1993, Penuelas et. al., 1995, Cho et. al., 

2008). Horler et. al. 1983, Dawson and Curran, 1998 and 

Schulster et. al., 2012 document two reasons for this 

prominent Red Edge in vegetation: (1) strong chlorophyll 

absorption in the red region of the electromagnetic 

spectrum and (2) high internal leaf scattering causing a 

strong reflectance of the near infrared region of the 

electromagnetic spectrum.  

 

1.1 Classical techniques and challenges 

Early studies in crop stage discrimination, plant health 

monitoring or even species identification using the Red 

Edge region were established (Gupta et. al. 2003, Smith et. 

al. 2004). However, the large weight of the instruments 

and costs associated with such techniques led to the 

necessity of using broad band, multispectral sensors for the 

same. Plenty of studies have performed classification of 

multispectral images utilizing spectral indices generated 

out of manipulating the features of the spectrum (Jackson 

and Huete, 1991, Schuster et. al., 2012, Ustuner et. al. 

2015). However, these methods face a significant 

drawback as a result of the broad band nature of 

multispectral imaging being unable to map the finer 

aspects of the spectrum (Ferrato and Forsythe, 2012). To 

cater to this specific advantage, hyperspectral imaging 

sensors for space borne and airborne applications were 

developed and improved significantly over the last two 

decades (Pignatti et. al., 2009; Purkis and Klemas, 2011; 

Heiden et. al., 2012). Through hyperspectral imagery, we 

are now able to monitor crop health utilizing the 

chlorophyll and photosynthesis related absorptions at 437 

(chlorophyll a), 460 (chlorophyll b), 642 (chlorophyll a) 

and 659 nm (chlorophyll b) (Porra et. al., 1989, Penuelas 

et. al., 1995, Wu et. al., 2008), 705 nm (chlorophyll 

absorption Wu et. al., 2008), 530, 735 nm (indicating 

photosynthesis Lang et. al., 1991). Soil moisture studies 

can be performed to optimize growth parameters possible 

in VNIR as well as SWIR due to soil-water interactions 

from 350 nm to 2500 nm (Gao, 1996, Ceccato et. al., 2001, 

Champagne et. al., 2003, Stimson et. al., 2005). Vegetation 

parameters such as Leaf Area Index, biomass are estimated 

using the Red Edge specifically from 680 to 750 nm 

(Vogelmann, 1993, Penuelas et. al., 1995, Cho et. al., 

2008). Plant physiological parameters including nitrogen 

content using 1510, 1680 nm bands (Penuelas et. al. 1995, 

Serrano et. al., 2002), lignin using 1680 and 1754 nm 

bands and cellulose quantification using bands from 2000 
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to 2200 nm (Serrano et. al., 2002, Daughtry et. al. 2006) 

can be achieved. Moisture related plant stress can also be 

studied due to the water absorptions at 1400 and 1900 nm 

(Gao 1996, Ceccato et. al. 2001).  

 

1.2 Motivation and contributions 

Hyperspectral imagery permits a precise measurement of 

the radiant flux (Jensen and Im, 2007) and the 

differentiation of a variety of agricultural species and crop 

health stages. They however fail spatially due to the trade-

off between spectral resolution, spatial resolution and 

Signal to Noise Ratio (SNR) (Yokoya et. al., 2017). This 

inherent trade-off between spatial resolution, spectral 

resolution and SNR prompted the necessity to use image 

processing techniques to use the spatial information of 

high resolution panchromatic imagery and spectral 

information from hyperspectral imagery thereby 

metaphorically being able live in the best of both worlds. 

This process is called fusion. The fused data sets along 

with hyperspectral and multispectral data sets were 

compared for their classification accuracy using standard 

classifiers such as support vector machines (SVM), 

spectral angle mapper (SAM) and maximum likelihood 

classifier (MLC). The major contributions of this study are 

summarized as follows: 

  

1. Performing fusion of Hyperion data set with the Red 

Edge band of the RapidEye data set via the technique 

of Gram Schmidt spectral sharpening to yield a high 

spatial and spectral resolution image. 

 

2. Classification of the multispectral image, hyperspectral 

image and fused image using SVM (using radial basis 

function (RBF) kernel and polynomial kernel of order 

3), SAM and MLC to evaluate the utility of the fused 

product. 

 

2. Data used and study area 

 

This study attempts to characterize vegetation by 

emphasising on the Red Edge bands of Hyperion data and 

compare classification results of hyperspectral imagery 

from Hyperion, multispectral imagery from RapidEye and 

a fused product of the same. Characteristics of the 

Hyperion and RapidEye sensors are tabulated in table 1. 

 

2.1 Satellite imagery used 

Earth Observer-1 Hyperion: Hyperion (Pearlmann, et al., 

2003) is a hyperspectral sensor on board the NASA 

(National Aeronautics and Space Administration) Earth 

Observer 1 (EO-1) which functioned from November, 

2001 to April, 2016. With a 242 channels ranging from the 

VNIR (Visible and Near Infrared) to SWIR (Short Wave 

Infrared), 400 to 2500 nm, Hyperion images at a spatial 

resolution of 30m and a radiometric resolution of 12bits. 

Hyperion data is available as level 1, radiometrically 

calibrated product (Level 1R) as well as geometrically 

corrected and georeferenced data (Level1 GST and IT) at 

the USGS (United States Geological Survey) website 

Earth Explorer: https://earthexlorer.usgs.gov. Each of 

these datasets need to be further corrected before they can 

be used to develop products of our interest. Of the 242 

bands, some are highly noisy and a redundancy exists due 

to the overlap of detecting regions by the VNIR and SWIR 

detector. Hence we ignore these bands and the total usable 

bands comes down to 196 (1-7, 58-78 and 225-242 are 

removed). This is followed by correction due to effects of 

the atmosphere. The corrections often reduce the SNR. To 

correct for this, attempts to separate the noise from the data 

are performed using the Minimum Noise Fraction (MNF) 

denoising technique (Green et. al., 1998). 

 

RapidEye: The RapidEye constellation is a set of 5 

satellites designed and developed by Surrey Satellite 

Technology Ltd in 2008 and later acquired by Planet in 

2015. It provides imagery of 5m/pixel spatial resolution in 

5 bands (red, green, blue, red-edge and near infrared) 

available at the Planet Server webpage. With an elevation 

of 630km and a 77km swath, RapidEye has a revisit time 

of 5.5 days at nadir. All five satellite sensors are calibrated 

similarly leaving no distinction between satellite imagery 

from any sensor. The mosaic of 5 level 3 ortho-corrected 

imagery was used for this study. Atmospheric correction 

was performed using the Quick Atmospheric Correction 

(QuAC) technique. (Bernstein et al., 2005).    

 

2.2 Study area 

The study area is the Dhemaji and Lakhimpur region of 

Assam which is abundant in rice crop cultivation. Hence, 

the Red Edge region is specifically used for further 

discrimination within the vegetation class. Dhemaji 

district of Assam is bounded by Arunachal Pradesh in the 

North and the river Brahmaputra in the South. It is a plain 

area with an average elevation of 104 m above sea level. 

Numerous drainage systems originating from the hills of 

Arunachal Pradesh flow through Dhemaji to drain into the 

Brahmaputra. Physiographically, Dhemaji is in the form of 

three main sub districts: the piedmont zone where Dhemaji 

borders the Arunachal Himalayas, the active flood plains 

near the river Brahmaputra and its tributaries, and the low 

lying alluvial belt.  

Table 1: Sensor information for the Hyperion and RapidEye instruments  

Instrument/ 

Parameter 

Wavelength 

Range nm 

No of spectral 

channels 

Spectral 

Resolution 

Spatial Resolution Quantization 

EO-1/Hyperion 400-2500  242 10nm 

(detector 

dependant) 

30m 12  bits 

RapidEye 440-850  5 non-uniform 5m 12 bits 
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With a total geographic area of 323,700 ha. Dhemaji 

covers a variety of socio-geographic features including 

build up (208 ha), horticultural lands (2534 ha), forest 

cover (53,225 ha) and grasslands (97,167 ha), making it a 

perfect study area for the classification techniques aimed 

towards vegetation. Three Test Sites were selected across 

Dhemaji and Lakhimpur and data of Hyperion and 

RapidEye taken on October, 2012 were analysed and 

regions of interest were selected based on the existing 

Land Use Land Cover (LULC) map for 2011-2012. Each 

region and the subsequent classes we have classified into 

are summarized below. The Test Sites used for the study 

are depicted in figure 1. Details of training and test samples 

are available in table 2-4.  

 

 

 
Figure 1: False colour composite (NIR, Red, Green) for Test Site 1, 2 and 3 respectively obtained using RapidEye 

(fig: 1a-1c, band combination: 5, 3 and 2) and Hyperion data sets (fig: 1d-1f, band combination: 44, 23 and 13)  

 

 

 

Table 2: Information on the testing and training samples for each class of Test Site 1 

S.No Class name Hyperion RapidEye 

Train Size Test size Train Size Test size 

1 Kharif crop 696 176 6162 4933 

2 Open forest 358 156 12642 5455 

3 Fallow 362 176 3322 3382 

4 Water Body 293 154 4571 1576 
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Table 3: Information on the testing and training samples for each class of Test Site 2 

S.No Class name Hyperion RapidEye 

Train Size Test size Train Size Test size 

1 Kharif crop 180 628 5094 5563 

2 Perennial River 149 323 2704 2580 

3 Inland Wetland 140 240 1742 2115 

4 Fallow 162 227 2846 2407 

5 Open forest 168 261 3711 3064 

 

Table 4: Information on the testing and training samples for each class of Test Site 3 

S.No Class name Hyperion RapidEye 

Train Size Test size Train Size Test size 

1 Open forest 223 260 1276 1330 

2 Perennial River 172 190 761 1860 

3 Fallow/Sandy 128 108 732 1207 

4 Kharif Crop 190 262 6862 2283 

5 Double Crop 119 119 4305 1516 

 

 

Test Site 1: This Test Site depicts mainly the following 

features in the LULC map. A perennial and non-perennial 

drainage system, agricultural lands, fallow lands and open 

forests surrounding the rural build up near the water 

bodies. As the rural build up was evident only in the form 

of a few pixels in the RapidEye image, we have selected 

four classes for this site: (1) water body, (2) vegetation 

type 1 for agricultural lands of the kharif crop, (3) 

vegetation type 2 for dense open forest regions 

intermingled with rural build up and (4) fallow lands.  

Test Site 2: This site is geographically similar to site one. 

There exists a perennial water body as well as waterlogged 

regions, agricultural lands, fallow lands and open forest 

around rural build up. Five classes were selected: (1) water 

body (perennial), (2) vegetation type 1 for agricultural 

lands (kharif), (3) vegetation type 2 for open forests, (4) 

fallow lands and (5) water logged inland wetlands. The 

similarity with site 1 was maintained so that accuracies 

could be checked in varying the number of classes. 

 

Test Site 3: Five classes were selected for this site. 

However, a larger variety of vegetation types were selected 

to check if the Red Edge bands could accurately assess the 

class type. The classes selected are as follows: (1) water 

body, (2) vegetation type 1 for agricultural lands, (3) 

vegetation type 2 for agricultural lands, (4) open forests 

and (5) barren/fallow lands. 

 

3 Methodology 

 

A Hyperion strip over the Dhemaji and Lakhimpur 

districts of Assam taken on October, 2012 was used. 

RapidEye images over the same site for October, 2012 at 

similar local times were mosaicked and subsetted to the 

same areal extent as the Hyperion data. This was followed 

by georeferencing the Hyperion data set to the RapidEye 

data set using control points. Once both datasets were 

prepared, the processing in the form of bad band removal 

was performed for Hyperion and atmospheric corrections 

were performed on both Hyperion and RapidEye images. 

The corrected and georeferenced images were fused using 

the Gram-Schmidt hyperspectral sharpening method. The 

original Rapid Eye image, Hyperion image and fused 

image is displayed in figure 2 a, b and c respectively. The 

spectral characteristic of the region is as observed in figure 

3 a, b and c.  Hyperspectral datasets require significant 

denoising for enhanced spectral understanding. Hence, the 

MNF transformation as implemented by Green et. al., 1998 

was used.  A spectral subset of the fused image and the 

Hyperion image in the Red Edge region was also 

considered to understand if a Red Edge based 

classification depicts superior results in the case of 

vegetation classification. 

 

3.1 Fusion 

Multiple previous studies (Chutia et al, 2010, Pohl, 2013, 

Akhtar et. al., 2015, Yokoya et. al., 2017) have been 

performed using fusion of hyperspectral or multispectral 

images and panchromatic high resolution images. Yokoya 

et. al., 2017 has further performed a comparison of results 

for the different fusion methods for a variety of datasets 

including AVIRIS, HyDICE etc. Many fusion algorithms 

exist which vary in the accuracy either resulting in spatial 

or spectral distortions (Zhang et. al., 2007; Yakoya et. al., 

2012; Qian and Chen, 2012). Recent years have seen more 

sophisticated attempts at the hyperspectral fusion 

challenge. Chen et.al.., 2014 performed fusion by dividing 

the multispectral image into individual bands and 

hyperspectral image into segments of bands centred 

around a corresponding multispectral band and performed 

pan sharpening on each segment. In this study, we use the 

Gram Schmidt spectral sharpening method (Laben and 

Brower, 2000; Maurer, 2013).
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Figure 2: Spatial characteristics of the (a) RapidEye image, (b) Hyperion image and (c) Fused image as observed 

over Test Site 1 

 

 
Figure 3: Spectral characteristics of the (a) RapidEye image, (b) Hyperion image and (c) Fused image as observed 

over Test Site 1 

 

This involves the hyperspectral image combined via a 

linear combination by using weights to represent it as a 

panchromatic image. 

 

PANsim =  ∑ wi Hi
N
i=1   ... (1) 

 

This is followed by the Gram Schmidt orthonormalization 

of the vectors in the N dimensional space where each band 

represents an N dimensional vector where N is the number 

of pixels. This procedure decorrelates the bands. The 

orthonormalization procedure involves the pan band taken 

as the first vector (v1). It follows the general formula as 

follows where ui is the orthonormal vector and vi is the 

original vector: 

 

u1= v1  ... (2) 

 

ui = vi − ∑ (
uj

Tvi

uj
Tuj

) vi
i−1
j=1  ... (3) 

 

This is followed by replacing the averaged panchromatic 

image with the high spatial resolution panchromatic image 

and performing an inverse Gram Schmidt transform 

(similar to the forward transform). This gives us the fused 

product. 

 

In order to check for the validity of the fused product, point 

to point spectral correlation was investigated between the 

fused data and the Hyperion data and the correlation 

coefficient and regression coefficient were calculated. 
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3.2 Classification 

Three Test Sites within the Dhemaji-Lakhimpur region 

was considered. Classification was performed using ROIs 

derived from the LULC map and visual examination of the 

images. Hyperspectral classification techniques are 

adversely affected by the Houghes effect due to which the 

required number of training samples for larger number of 

bands increases to maintain the accuracy (Chutia et. al., 

2015). Breunig et. al., 2011 suggest that the SVM and 

SAM classifiers do not demonstrate a reduction in 

accuracy. Hence, these two classifiers were used for the 

purpose. Classification was performed on the three test 

sites using RapidEye, Hyperion and the fused result of 

RapidEye and Hyperion with classes defined in 

accordance to the existing LULC map and the results were 

assessed by comparing the kappa coefficient and accuracy 

assessment. For a comprehensive list of hyperspectral 

classification techniques, refer to Chutia et. al., 2015. 

 

 

3.2.1 Spectral Angle Mapper (SAM) Classifier  

SAM is a classifier that compares the similarity between 

the test and training samples by considering the spectrum 

to be a D dimensional vector where D is given by the 

number of bands (Yuhas et. al., 1992). The training 

samples are either the laboratory spectra in the form of 

spectral libraries that have been resampled to the 

dimensionality of the test samples. Alternately, they are 

obtained from known regions within the satellite imagery 

that is being classified. This study uses ROIs as obtained 

from a ground survey performed in the Dhemaji and 

Lakhimpur district in 2012. Spectral similarity is estimated 

by calculating the angle between the test and training 

spectrum vectors. 

 

𝛼 = cos−1 [
∑ 𝑇𝑖

𝐷
𝑖=1 𝑅𝑖

(∑ 𝑇𝑖
2𝐷

𝑖=1 )
1
2((∑ 𝑅𝑖

2𝐷
𝑖=1 )

1
2)

]---- (4) 

 

Larger angles suggest dissimilarity. An advantage SAM 

has over other traditional classifiers is the independence 

from intensity values permitting regions of shadow to also 

be classified accurately. 

 

3.2.2 Support Vector machine (SVM) Classifier 
SVM based classification is a well-recognized 

classification technique (Chutia et. al., 2014) where an N-

1 dimensional hyperplane is used to separate the data by 

maximizing the margin between them. The hyperplane is 

called the optimal hyperplane and the data points closest 

to the hyperplane are the constraining factors and are 

called the support vectors (Suykens and Vandewalle, 

1999). This suggests that SVM is a linear classifier. 

However, to account for non-linear classification, SVM 

can be used alongside kernels such as polynomial, RBF, 

sigmoid etc. (Sharma et. al., 2016). This study utilizes two 

commonly used kernels which have demonstrated 

significant success in the past (Gordon, 2004). The 

mathematical form of the polynomial kernel is given as 

below: 

 

𝐾(𝑥, 𝑥𝑖)  =  1 + ∑ (𝑥 ∗  𝑥𝑖)𝑑
𝑖    ... (5) 

 

Here, x is the input, xi is the support vector and d is the 

degree of the polynomial to be used. The RBF kernel 

expression is as follows: 

 

𝐾(𝑥, 𝑥𝑖)  =  𝑒
(−𝛶∗(∑ (𝑥 — 𝑥𝑖)2

𝑖 ))
     ... (6) 

There are two parameters of concern that can be tweaked: 

the gamma parameter and the penalty parameter (Sharma 

et. al., 2016). The gamma parameter depicts the influence 

of the training sample with smaller values causing far 

reaching influence. The penalty parameter or the 

misclassification trade off parameter affects the 

smoothness of the decision boundary. Larger values cause 

over fitting.   

 

3.2.3 Maximum Likelihood Classifier (MLC)  
MLC is based on the Bayes law following 

posterior=prior*likelihood/evidence given by:  

 

Lx =  P (
ω

x
) =  

P(ω)∗P(
x

ω
)

P(x)
             ... (7) 

 

Generally, the prior probability of the for a class ω is 

assumed to be a constant or expected to be equal to each 

other and the evidence, P(x), is usually common to all 

classes, therefore Lx is dependent on P(x/ω). Classification 

is performed such that the likelihood of x belonging to a 

class ω is maximized (Strahler, 1980). Sampling should be 

such that the estimation of the mean and covariance is 

reflective of that of the population. The maximum 

likelihood method is not useful when the distribution of the 

population does not follow the normal distribution. 

 

4. Results and discussion 

 

For very small regions, we obtain better results using the 

higher spatial resolution images as expected. MLC 

consistently displayed best results with the RapidEye data 

due to the inferior performance of the classifier with higher 

number of bands (Houghes Phenomenon). For high inter 

class similarity, as is the case is for the water and 

vegetation classes in Test Site 2, we observe that the 

classification was performed best using the hyperspectral 

data of Hyperion and the Red Edge subset from the 

Hyperion data. Fused data is also observed to perform well 

in this case. For low interclass similarity in a small Test 

Site, however, we observe that fused data provides good 

results. However, the separability between the vegetated 

and non-vegetated classes is brought out better using the 

Red Edge subsets of the fused dataset and the Hyperion 

dataset. Thus the utility of the Red Edge subsetting for 

optimum feature extraction for classification is 

established. Details on the denoising, assessment of fusion 

and classification results are as documented in the 

following subsections. 
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4.1 Denoising Using the MNF Transform 

The Eigen values and Eigen vectors of the image obtained 

are ordered (Figure 4). The image was then projected onto 

the Eigen space to decorrelate the bands and noise 

whitening was performed. The noise related Eigen values 

(normalized to 1) were discarded and the signal rich Eigen-

images were employed for the inverse that generated us the 

denoised image that is used for classification. 

 

 
Figure 4: Eigen value graph based on which we select 

the Eigen values that can be used to maximize the SNR 

 

4.2 Spectral characteristics of the fused product  
From figure 5, we observe that the Gram Schmidt spectral 

sharpening leads to an offset in the intensity values of the 

fused product. In order to study if any distortion occurs or 

if the difference lies solely in the offset, we have 

performed a correlation test on the data set. Ten random 

regions were selected from both the Hyperion image and 

the fused image. The average spectrum of each region was 

computed and a scatter plot was used to check for the 

correlation. Very high correlation was observed with an 

average Pearson coefficient of correlation as 0.998 (Figure 

6). 

 

 
Figure 2: Spectrum of a vegetated region as displayed 

by the fused image and the Hyperion image after all 

corrections have been performed. X axis is wavelength 

in nm and y axis is reflectance. 

 
Figure 3: Scatter plot between fused spectra and 

Hyperion spectra 

 

4.2 Classification results 

The results of classification accuracy in the form of overall 

accuracy and kappa coefficients are documented in the 

tables 5-7.  

 

Test site 1 classification yields a maximum accuracy by 

the Red Edge bands subset of the Hyperion image. 

However, the fused image and the Red Edge subset also 

depict similar high accuracy. The RapidEye image yields 

a maximum accuracy with the ML classifier, the fused 

image with the SVM classifier and the Hyperion image 

with the SVM classifier. The Red Edge spectral subsets of 

the fused and Hyperion image presented highest accuracies 

for the ML and the SVM classifiers respectively. The SVM 

classification results for each dataset for the test site is 

given in figure 6. 

 

Test site two portrays a maximum accuracy for the 

RapidEye image with the ML classifier and the Hyperion 

image with the SVM classifier. The Red Edge spectral 

subset of the Hyperion also presents a comparable 

accuracy followed by the fused data set and the spectral 

subset of the same. The RapidEye image accuracies follow 

the order of ML, SVM and finally SAM classifiers. The 

Red Edge subset of Hyperion also follows the same order 

as expected. The Red Edge subset of the fused subset 

depicts a deviation from the expected results with SVM 

performing better than MLC in spite of the reduced 

number of bands.  However, the Hyperion image and the 

fused image follow the expected trend of SVM accuracies 

greater than the SAM accuracies and finally the ML 

accuracies. This arises due to the Houghes phenomenon. 

The SVM classification results for each dataset for the test 

site is given in figure 7. 

 

Test site 3 depicts maximum accuracies for the Hyperion 

image followed by the Red Edge subset of the Hyperion 

image. The RapidEye image and fused image 

classification results are also competitive. However, the 

Red Edge subset of the fused image displays a significantly 

deteriorated accuracy level. The performance of SVM is 

better in images with larger bands such as Hyperion and 

the fused product. SVM and ML classifiers perform 

comparably for the Red Edge subsets. However, the 

RapidEye image due to its minimum spectral bands and 
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high spatial resolution demonstrate a high accuracy with 

the ML classifier. ML classified output for Hyperion is not 

available due to lack of training samples. The SVM 

classification results for each dataset for the test site is 

given in figure 8. 

 

Table 5: Table depicting overall accuracy and kappa coefficient for the RapidEye, Fused, Red Edge of Hyperion, 

Red Edge of Fused image and Hyperion images classified using the SAM, MLC, SVM with Polynomial order 3 

and RBF kernel classifiers for Test Site 1 

 
 SVM SAM MLC SVM Poly 

Kappa Accuracy 

in % 

Kappa Accuracy 

in % 

Kappa Accuracy 

in % 

Kappa Accuracy 

in % 

RapidEye 0.91 93.35 0.76 83.06 0.92 94.48 0.90 93.24 

Fused 0.96 97.13 0.64 74.03 0.64 73.43 0.96 97.03 

Red Edge 

Fused 

0.93 95.16 0.70 78.28 0.95 96.57 0.93 95.02 

Red Edge 

Hyperion 

0.96 97.28 0.71 78.55 0.94 95.47 0.95 96.53 

Hyperion 0.93 94.71 0.83 87.61 0.61 70.09 0.94 95.47 

 

 

Table 6: Table depicting overall accuracy and kappa coefficient for the RapidEye, Fused, Red Edge of Hyperion, 

Red Edge of Fused image and Hyperion images classified using the SAM, MLC, SVM with Polynomial order 3 

and RBF kernel classifiers for Test Site 2 

 
 SVM SAM MLC SVM Poly 

Kappa Accuracy 

in % 

Kappa Accuracy 

in % 

Kappa Accuracy 

in % 

Kappa Accuracy 

in % 

RapidEye 0.84 87.51 0.76 81.21 0.87 89.86 0.84 87.48 

Fused 0.79 83.30 0.54 64.19 0.53 61.43 0.78 82.99 

Red Edge 

Fused 

0.76 81.61 0.64 72.31 0.74 79.52 0.76 81.55 

Red Edge 

Hyperion 

0.85 88.24 0.60 68.34 0.87 89.61 0.85 87.99 

Hyperion 0.87 89.23 0.81 84.61 0.41 51.56 0.86 88.99 

 

Table 7: Table depicting overall accuracy and kappa coefficient for the RapidEye, Fused, Red Edge of Hyperion, 

Red Edge of Fused image and Hyperion images classified using the SAM, MLC, SVM with Polynomial order 3 

and RBF kernel classifiers for Test Site 3 

 
 SVM SAM MLC SVM Poly 

Kappa Accuracy 

in % 

Kappa Accuracy 

in % 

Kappa Accuracy 

in % 

Kappa Accuracy 

in % 

RapidEye 0.69 74.91 0.57 65.41 0.70 75.79 0.51 59.81 

Fused 0.52 61.14 0.46 56.37 0.32 42.68 0.69 75.01 

Red Edge 

Fused 

0.51 60.37 0.45 56.33 0.51 60.05 0.51 60.10 

Red Edge 

Hyperion 

0.72 77.53 0.48 59.32 0.72 77.85 0.72 78.06 

Hyperion 0.73 78.38 0.65 73.16 N/A N/A 0.74 79.45 
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Figure 4: (a) RapidEye image as a reference, (b) the fused image classification results, (c) Hyperion image 

classification results, (d) RapidEye image classification results, (e) Red Edge subset of the fused image classification 

result and the (f) Red Edge subset of the Hyperion image classification result for Test Site 1 

 

 
Figure 5: (a) RapidEye image as a reference, (b) the fused image classification results, (c) Hyperion image 

classification results, (d) RapidEye image classification results, (e) Red Edge subset of the fused image classification 

result and the (f) Red Edge subset of the Hyperion image classification result for Test Site 2 
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Figure 6: (a) RapidEye image as a reference, (b) the fused image classification results, (c) Hyperion image 

classification results, (d) RapidEye image classification results, (e) Red Edge subset of the fused image classification 

result and the (f) Red Edge subset of the Hyperion image classification result for Test Site 3 

 

5. Conclusion 

 

Satellite images permit accurate mapping of the land cover 

via high spatial resolution multispectral images such as 

those of RapidEye, CartoSat, SkySat, PlanetScope, 

WorldView series etc. However, to distinguish within the 

more similar land use features, spectral identification is 

required. The use of hyperspectral imagery thus provides 

additional spectral features for use in the various 

classification techniques. However, due to the low spatial 

resolution of hyperspectral imagery, the fused products 

were generated and their utilities tested with established 

classification techniques. Our results suggest optimal 

classifiers to be used with the types of data are independent 

of the test site and depend only upon the sensor and 

number of bands. RapidEye data classifies the scene best 

with the MLC classifier. However, as the number of bands 

increases as is the case with the fused or Hyperion images, 

MLC responds in a sub-optimal manner. SVM classifiers 

with RBF or polynomial kernels perform consistently 

better. Red Edge subsets of the Hyperion and fused images 

are observed to perform well with both MLC and SVM 

classifiers. With regard to the Test Sites, RapidEye images 

can be directly used for classification in case of diverse and 

less number of classes. Hyperion data can be used where 

there exists similarity within the data such as multiple 

vegetation classes where minute differences in the spectra 

come into consideration. However, best results are 

observed with the red edge subsets of the fused and 

Hyperion data sets. In case of small regions approaching 

the fused red edge subset performs better. However, if the 

spatial resolution of the Hyperion data is not limiting, it 

presents comparable results.  

 

The fusion technique in this study exhibited good results 

in smaller regions where resolution of land cover classes 

at proximity are required. However, on larger scales, the 

results are obsolete when compared to hyperspectral image 

classification.  This however can be improved by usage of 

other fusion techniques (Yokoya et. al., 2017, Akhtar et. 

al., 2015). An aspect to be considered for future 

applications include the utilization of high spatial 

resolution multispectral data via Unmanned Aerial 

Vehicles (UAV) or aircrafts with low resolution satellite 

based hyperspectral data for accurate cm level mapping 

and classification of the land use. 
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