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Abstract: Empirically, Support Vector Machines (SVMs) have been reported with higher performance on many 

benchmark datasets including remotely sensed (RS) data. In SVMs, it is prerequisite to obtain a large decision boundary 

by representing the data points in a n-dimensional feature space using kernel methods. SVMs work well with a minimal 

number of training samples when appropriate kernels are used to optimize the hyperplane. In addition, SVMs are being 

used to build ensemble classification methods. The capability of SVM for constructing a set of the diverse base 

classifier is not yet fully exploited for classification of RS data. The main objective of this work is to develop an 

ensemble of SVMs (enSVM) with enhanced predictive ability with minimal number of base classifiers. The proposed 

enSVM is a collection of SVMs as base classifier where each of the base classifiers is assigned independently a random 

subspace of features to build the predictive model. Each individual classifier cast a unique vote and the final 

classification is based on the majority of votes of all the base classifiers. An investigation was carried out on the two 

sets of satellite data of QuickBird and Landsat Enhanced Thematic Mapper Plus (Landsat ETM+) sensors pertaining to 

different landscape with different land cover classes. It was observed that the enSVM outperformed the SVM, 

Maximum Likelihood Classifier (MLC), Multi Layer Perceptron (MLP) and achieved comparable results with the most 

powerful random forest (RF) classifier.  
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1. Introduction  

 

Remote sensing (RS) community paying confident 

attention to ensemble methods as they have shown 

significant potential to classify heterogeneous, high 

dimensional, noisy, missing, and complex RS datasets 

(Opitz and Maclin, 1999; Han et al., 2012; Huang et al., 

2013; Chutia et al., 2015; Chutia et al., 2017; Rawat et 

al., 2018). The focal intuition of ensemble principle is to 

create multiple hypotheses generated by weak learners to 

achieve higher classification accuracy by combining or 

aggregating their predictions (Opitz and Maclin, 1999). 

Diversity in multiple hypotheses is prerequisite for 

ensemble methods. Empirically, ensemble methods tend 

to produce better results when there is a significant 

diversity among the models. Diversity can be achieved 

through the fusion of different classifiers, randomization 

of training data, and randomization in feature space etc. 

(Hansen and Salamon, 1990; Kuncheva and Whitaker, 

2003; Brown et al., 2004). 

 

Bagging (Breiman, 1996) and Boosting (Freund and 

Schapire, 1996) are more commonly used ensembles 

methods in machine learning applications. Bagging being 

a variant of meta classifier combines the predictions of 

base classifiers for improving the unstable estimation and 

the predictive accuracy of the classifiers. It uses the 

bootstrap technique for randomization of the training 

data. Bagging creates the small random bags with the 

replacement of training dataset from the original datasets 

in order to create the diversity among the base classifiers. 

It is very popular and more frequently used in decision 

tree algorithms (DT, Quinlan, 1986) as it avoids the 

overfitting and reduces the variance [Chan et al., 2001]. 

However, the boosting algorithm reduces the bias with 

the variance to achieve higher classification accuracy. It 

learns from the errors and assigns the corresponding 

weights to each weak base classifier in order to get better 

predictive accuracy. In boosting, AdaBoost (Freund and 

Schapire, 1996) is the most popular and successful 

version that follows the weight adjustment procedure to 

classify a novel instance. In every iteration, Adaboost 

increase the weights on the misclassified instance and 

decreases the weights on correctly classified instances in 

order to give a chance to misclassified or unclassified 

data (Freund and Schapire, 1996; Chan et al., 2001). The 

main drawback of bagging model is that they suffer from 

the overfitting while dealing with the noisy data. On the 

other hand, the large number of outliers (highest weight 

instance) can reduce the performance of AdaBoost 

(Freund and Schapire, 1999). For overcoming overfitting 

problem Breiman proposed random forest (RF) algorithm 

in 2001 (Breiman, 2001). Currently, the RF has been 

successfully implemented in various applications 

(Casanova et al., 2014; Yang et al., 2008; Goldstein et al., 

2010; Sylvester et al., 2017). The RF is based on the 

principal of bagging, where a number of DT are 

independently constructed as a base classifier through 

random sampling of the training dataset. The major 

concern in RF is the selection of appropriate size of the 

base classifiers; number of random subset of trees. In the 

current scenario, rotation forest (Rodriguez et al., 2006) is 

getting popular and found comparable with RF in many 

instances (Peijun et al., 2015; Xia et al., 2014; Rawat et 

al., 2018). Unlike RF, rotation forest splits the features 

into several disjoint subsets and apply the data 

transformation on each subset using principal component 

analysis (PCA, Jolliffe, 1986). In the second stage, new 

training dataset for the DT is formed by concatenating the 

linear extracted features contained in each subset. Thus, 

rotation forest enhances the classification accuracy with 

diversity within the ensemble (Rodriguez et al., 2006; Du 

et al., 2015; Kuncheva and Rodriguez, 2007; Liu and 

Huang, 2008). Comparatively, rotation forest is a 
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complex model but it can provide excellent performance. 

However, RF is most stable and can provide consistently 

higher predictive accuracy with the noisy data and low 

computation cost. 

 

Recently, the Random committee is found as an 

important platform for combining the base classifiers. 

Random committee constructs an ensemble of base 

classifiers and averages their results (Witten and Frank, 

2005). The results of all base classifiers are based on the 

same data, but they are initialized by the different random 

number seed (Lira et al., 2007; Tatsis et al., 2013). On the 

other hand, random subspace creates diversity in the 

training data through feature space. The final prediction is 

the majority of votes of individual predictor. In recent 

times, an ensemble of traditional classifiers is in trend in 

various fields (Rahman et al. 2016; Kenduiywo et al., 

2017; Liu et al., 2016; Yu et al., 2015; Sharma et al., 

2018; Chutia et al., 2014; Vyškovský et al., 2016; Han et 

al, 2012; Lv et al., 2017). SVMs now effectively used as 

a base classifier in ensemble methods (Claesen et al., 

2014; Sørensen and Nielsen, 2018; Wandekoken et al., 

2011; Lo et al., 2015). Ensemble classifiers with DTs 

algorithm are mostly preferred as their capability already 

established on many benchmark data. However, 

appropriateness of traditional classifier in building 

ensemble approach needs attention. 

 

1.2 Motivation 

Nonparametric classifiers like SVMs are highly 

productive. But, the performance of SVMs are highly 

influenced by the selection of kernel parameters. A 

number of ensemble methods as illustrated in the earlier 

section have been proposed where DT classifiers have 

been used as base classifiers in most of the instances. 

However, the potential of SVMs with suitable kernel 

parameter and appropriate ensemble methods for erecting 

a set of the diverse hypothesis is not yet fully explored for 

RS data classification. 

 

1.3 Objectives 

The primary objective of this work is to develop an 

efficient and effective classification framework using 

ensemble technique for classification of RS imagery with 

the following contributions: 

 

1) Selection of appropriate kernel parameters for 

SVM classifier; 

2) To develop an ensemble of SVMs using random 

subspace method (enSVM); 

3) To assess the performance of the enSVM in 

comparison with the MLP, MLC, RF and SVM. 

 

Rest of the research article summarized as follows: the 

Section II gives the detailed information about the 

characteristics of datasets used in the investigation. The 

framework of the proposed enSVM is illustrated in the 

Section III. The analysis on the experimental results 

discussed in the Section IV followed by the concluding 

remark in the Section V. 

 

 

2. Dataset used 

 

To assess the predictive ability of the proposed 

framework, the investigation was carried out on the 

moderate resolution Landsat ETM+ (Test site-I) and high 

resolution QuickBird (Test site-II) multispectral sensors 

datasets. The more details about the respective satellite 

sensors are given in the Table 1 followed by a description 

on the test sites.  

 

Table 1: Detailed information of both test sites 

Particulars Landsat ETM+ QuickBird 

Satellite Name Landsat 7 Digital Globe 

Spectral Resolution 0.45µm - 

0.90µm 

0.45µm - 0.90 

µm 

Number of bands 04 04 

Temporal 

Resolution 

16 days 1-3.5 days                                               

Spatial Resolution 30 meter 0.65 meter 

Swath 183 km 16.4 Km 

 

2.1 Test site-I  

The Test site-I is pertaining to Sontipur area of Assam, 

India comprised of five major classes including the river 

Brahmaputra. The site is topographically plain terrain 

dominated by agricultural crop land followed by forest 

tree clad area, scrub forest, and sand nearby river 

Brahmaputra. Details of the classes with respective train 

and test samples for Test site-I is given in Table 2. 

 

Table 2: Details of classes with train and test samples 

for test site-I  

Class Name Train 

sample 

Test 

sample 

River/Waterbody-

Perennial 

3165 1513 

Forest tree clad area 259 1119 

Agriculture cropland 870 1114 

Sand 225 1809 

Scrub Forest 118 1502 

Total number of samples 4637 7057 

 

2.2 Test site-II 

The Test site-II is anurban area of Shillong, capital of 

Meghalaya state of India representing the five major 

classes. The site-II is topographically hilly terrain and 

surrounded by pine trees followed by urban residential 

areas, open scrub, open surfaces, and shadows. Further 

information about the classes and their respective train 

and test samples can be found in the Table 3. 

 

Table 3: Details of classes with train and test samples 

for test site–II 

Class Name Train sample Test sample 

Urban residential areas 980 1485 

Pine trees 845 1103 

Shadows 975 958 

Open scrub 909 756 

Open surfaces 1078 1312 

Total number of samples 4787 5614 
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The satellite image of the Test site-I and Test site-II are 

shown in a and b respectively of Figure 1. 

 

  
a) Test site-I (Landsat ETM+) b) Test site-II (QuickBird) 

Figure 1: Satellite images of test sites 

 

3. Methodology 

 

The proposed enSVMis based on the principle of 

bagging, where each of the base classifier is initialized 

independently with a randomly selected subset of 

features. A set of SVMs are used as base classifier and 

each of the individual SVM casts a vote based on the 

decision boundary of hyperplane defined by the random 

subspace of the features. The final classification result is 

the majority of voting of all the SVM base classifiers.  

 

The entire approach is comprised of the three major 

components- i) selection of kernel parameter for SVM, ii) 

building of enSVM framework using random subspace 

and iii) assessment of enSVM using a set of accuracy 

assessment parameters. 

 

3.1 Selection of kernel parameters for SVMs 

SVM is a nonparametric classifier that uses the 

hyperplane to separate the data into the predefined 

classes. It tries to find a hyperplane with the help of 

support vectors and creates the decision boundary with a 

maximum distance between two classes.  

 

For an instance, 𝐷 is the set of all input data, and Xn is 

the input space with target class Ynthen- 

 

𝐷(𝑥) =  𝑆𝑖𝑔𝑛 (∑ .𝑛
𝑖 𝛼𝑖𝑦𝑖(𝑥𝑖 . 𝑥) + 𝑏)(1) 

 

SVM uses the kernel function to optimize the hyperplane 

for classification of multiclass data. Selection of kernel 

parameters is one of the important aspectsin SVMs. 

Kernel functions are being used to reduce the time 

complexity of SVMs by using the inner product of two 

transformed data vectors in the feature space (Cortes and 

Vapnik, 1996; Sharma et al., 2016).   

Popular kernels those can be used with SVMs are given 

below.   

 

Linear kernel :K(xi, xj) = xi
T. xj  (2) 

 

Polynomial kernel :K(xi, xj) = (r + γxi
T. xj)

d,γ > 0  (3) 

 

RBF kernel :K(xi, xj) = exp (−γ‖xi − xj‖
2

) ,γ > 0   (4) 

 

Sigmoid kernel :𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑡𝑎𝑛 ℎ ( 𝛾𝑥𝑖
𝑇 . 𝑥𝑗 + 𝑟)(5) 

 

where, xi = support vector of length 𝑚, 𝑇 = 

Transformation, γis the gamma function, d = degree of 

polynomial, and𝑟 = bias. The more information about the 

SVM can be found in Cortes &Vapnik 1996 (Cortes and 

Vapnik, 1996). 

 

A number of studies suggested that the polynomial kernel 

can achieve better predictive accuracy than the other 

kernels for classification of satellite datasets (Sharma et 

al. 2016; Kumar et al., 2018; Akbari et al., 2012). An 

investigation was carried out to assess the comparative 

performance of SVM classifier with all four kernels on 

both the datasets. It was observed that SVM with the 

polynomial kernel outperformed the SVM with other 

kernels with Kappa Index Analysis (KIA) =0.77 and 

Overall Accuracy (OA) =82.38% for Test site - I dataset 

and KIA=0.86 and OA=88.64% for Test site - II [Table 

4]. Based on the experimental results as specified in 

Table 4 it is proposed to use SVM with the polynomial 

kernel as a base classifier for building the enSVM. 

 

Table 4: Comparative assessment of kernels 
Kernels Test site-I Test site-II 

OA 
(%) 

KIA Tr (sec) 
OA 
(%) 

KIA Tr (sec) 

Linear 81.46 0.76 0.52 87.27 0.82 7.71 

Polynomial 82.38 0.77 0.14 88.64 0.86 1.48 

RBF 78.71 0.70 0.50 86.58 0.83 8.46 

Sigmoid 76.19 0.67 1.30 85.34 0.82 22.77 

 

3.2 Building enSVM using random subspace  

Random subspace creates the diversity in the features 

space by creating random subspace of features for each 

base classifier in order to achieve higher predictive 

accuracy (Ho, 1998). In enSVM model, training dataset 

has been feed to the random subspace algorithm where a 

set of training dataset defined by a set of random features 

was created based on the size of the enSVM. Then each 

of the randomly generated training datasets is provided to 

each of the SVM. 

 

Let, pK is a collection of SVM classifiers, enSVM →
{p(x, sk

r), k = 1, … , K} of sizeK, where p(x, sk
r)is each 

individual base classifier trained by a random subspace of 

feature sk
r ∈ 𝐹𝑅drawn with replacement.𝐹𝑅is the original 

set of feature sets of the training datasets 𝑇 with R 

number of features and r  is the number of features in sk
r   

where r < 𝑅 and  sk=i
r ≠  sk=j

r  ∀ k. Each of the SVM base 

classifiers is represented as p(x, sk
r) with sk

rrandomly 

selected predictors. Each individual p(x, sk
r) casts a vote 

for an unknown input x independetly. Let Ĉsk
r (x) is class 

prediction of each p(x, sk
r), the final classification of 

input x is the majority of the voting of all the p(x, sk
r ) 

classifiers i.e.,Ĉsk
r (x) = majority vote {Ĉsk

r (x)}1
K.More 

detailed information about the random subspace method 

can be found in (Ho, 1998). 

 

4. Results and Discussions  

 

All experiments were executed in the High Performance 

Cluster Computing (HPC) environment with 20 core Intel 

(R) Xeon (R) CPU E5-2680 V2 processor and 48 GB 

185



Journal of Geomatics  Vol 12 No. 2 October 2018 

 

RAM system configuration. The training samples of Test 

site - I associated with 80 features whereas 142 features 

were associated with Test site - II dataset.  Random 

subspace (space=0.50) was used to create diversity 

among the base classifiers by creating a set of training 

datasets with a random subspace of optimal features. 

 

A set of parameters such as KIA, Receiver Operating 

Characteristic (ROC), and Time Complexity (Tr) have 

been identified for performance analysis. A detailed 

discussion on the experimental observations are 

summarized in the context of the following: 

 

1) The optimal size of enSVM; 

2) Performance of enSVM against training size; 

3) Comparison with other counterparts like MLC, 

MLP, SVM, and RF. 

 

4.1 Optimal size of enSVM 

The size of enSVM (K) or the optimal number of the base 

classifier is an important parameter of the enSVM. The 

overall performance of the predictive model is highly 

affected by the size of the K. The enSVM was executed 

with K=1 with an increment of 1 till K=30 or it achieved 

the highest accuracy. Afterwards, the enSVM was 

executed with K=10 with an increment counter of 10 

maximum up to 200 or till it achieved the highest 

accuracy. It was observed that the enSVM achieved the 

highest accuracy at K=7 for Test site - I and at K=16 for 

Test site – II (Figure 2). The red color depicts the 

experimental observation of the OA on Test site - I 

against the variable size of K; whereas, the OA of 

enSVM for the Test site - II is represented by the blue 

colour. For Test site – I, enSVM was able to give highest 

accuracy with the 7 base classifier. The performance of 

enSVM was found higher and consistent on the high 

spatial resolution satellite dataset (Test site - II) as 

compared to the moderate spatial resolution dataset (Test 

site - I). It was also found that the larger size of K cannot 

ensure the higher performance rather the model can 

achieve better performance with a minimal size of K. The 

challenge was to find the optimal value for K. The 

following two observations are highlighted below: 

 

1) The performance of enSVM is not directly 

proportional to the higher value of K. However, 

larger size of K can cause higher computational 

expenses.  

2) During the execution of enSVM, each of the 

individual SVMs was initialized with a random 

subspace of feature. The diversity of model is not 

determined by the size of K rather it depends on the 

degree of randomization of the feature assign to each 

SVM. 

 

4.2 Performance of enSVM against training size 

SVM has been found effective classification option where 

the size of the training dataset is limited. It is required to 

assess the impact of the training data size on the 

performance of enSVM. The performance of enSVM 

against different size of the training dataset are given in 

the Table 5. It was observed that the performance of the 

enSVM is increased when the training size is large, 

because the same dataset is splitted into the train and test 

datasets. For example, enSVM achieved OA=88.58% 

with KIA=0.85 for Test site - I and OA= 96.22% with 

KIA=0.94 for Test site - II respectively when the model 

was trained by 10% of the dataset and tested with the 

remaining 90%. Similarly, it achieved the highest 

performance with OA=93.11 for Test site-I and 

OA=99.19% with KIA=0.98 for Test site-II when the 

training and test ratio was 90:10. Even though, the 

performance of enSVM with less training dataset yields 

slightly lesser accuracy as compared to the larger size of 

training dataset but this can be accepted when the training 

dataset is very limited. The remaining part of experiment 

was carried out with the independently generated train 

and test datasets as mentioned in the Section - II. There 

are two major observations can be made here: 

 

1) Like SVM, enSVM can also perform 

satisfactory when there is a lack of sufficient 

training dataset. 

2) The evaluation of the actual predictive ability 

the classifier should be trained and tested with 

the independently generated training and test 

datasets. 

 

 
Figure 2: Overall Accuracy (OA) versus number of K (SVMs) 
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Table 5: Overall Accuracy (OA) versus size of training data 

Datasets 
Accuracy 

Parameters 

Training data size (%) 

10 20 30 40 50 60 70 80 90 

Test site - I 
OA(%) 88.58 90.83 91.79 92.06 92.77 93.16 93.59 93.83 93.11 

KIA 0.85 0.88 0.89 0.90 0.90 0.914 0.91 0.92 0.91 

Test site - II 
OA(%) 96.22 98.08 98.26 98.52 98.87 98.78 98.92 99.19 99.19 

KIA 0.94 0.97 0.97 0.97 0.98 0.98 0.98 0.98 0.98 

 

Table 6: Comparative assessment of classifier 

Classifiers Test site - I  Test site - II 

OA KIA ROC t (sec) OA KIA ROC t (sec) 

SVM 82.38 0.77 0.91 0.13 88.64 0.86 0.96 1.39 

enSVM 85.50 0.81 0.95 1.26 91.99 0.89 0.98 11.0 

MLC 81.70 0.77 0.91 0.02 85.57 0.81 0.97 0.05 

MLP 83.30 0.78 0.93 26.5 89.99 0.87 0.98 13.1 

RF 84.34 0.79 0.94 0.03 90.24 0.88 0.98 0.10 

 

4.3 Comparison with other counterparts i.e., MLC, 

MLP, SVM, and RF 

The enSVM was executed with the optimal number of K 

i.e. 7 for Test site-I and 16for Test site - II as illustrated in 

the earlier section. A set of other counterparts of enSVM 

such as SVM, MLC, MLP, and RF have been utilized for 

classification of both the datasets. The comparative 

performance of all the classifiers are given in the 

Table6.The final classified outputs of enSVM on both the 

datasets sites are depicted in Figure 3 and Figure 4. It was 

found that the enSVM outperformed all the classifiers for 

both the datasets sites with KIA =0.81 for Test site - I and 

K=0.89 for Test site - II [Table 6]. The performance of 

enSVM was significantly enhanced than a single SVM 

classifier (K =0.77 for Test site - I and K=0.86for Test 

site - II) (Table 4). In addition, RF was found 

comparatively effective; it can create more diversity 

among the base classifiers through bagging and random 

selection of the best feature at each node. Comparatively 

enSVM suffers from little computational expenses due to 

the size of the ensemble (Table 6). The performance of 

MLP is higher than the MLC; however it causes large 

computational expenses during the training phase. The 

ensemble approach can provide higher performance with 

the traditional powerful classifiers like SVM. However, 

enSVM can create comparatively less diversity than RF. 

It will be more sensitive when there is little noise in the 

data and a random subspace method fails to assign the 

relevant subspace of features to each individual base 

classifier. However, if appropriate kernel parameter is 

selected for SVM, enSVM can performance than other 

powerful classifier like RF.  

 

Figure 3:Classified image of test site-I with legends 

 

 

 
Figure 4: Classified image of test site-II with legends 

 

5. Conclusion 

The proposed enSVM is based on the principle of 

bagging of training dataset in feature dimension where 

each individual SVM classifier decides the final 

classification based on the majority of their votes. The 

performance depends on the random subspace of relevant 

feature set assigned to each SVM classifier. The 

observations achieved during the investigation were 

found quite encouraging. However, random subspace of 

feature could be defined from the optimal set of relevant 

features using a feature selection technique in order to 

enhance the predictive ability as well as the 

computational complexity.  
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