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Abstract: Soil organic carbon (SOC) concentration is one of the most important indicators of soil fertility and soil quality. 

Accurate information about the spatial variation of SOC concentration is critical to sustainable soil utilization and 

management. Eastern Mau forest reserve is one of the major water towers in Eastern Africa, providing essential ecosystem 

services and it is critical in storage of organic carbon. The objective of this study is to predict the spatial distribution of 

SOC concentration using digital soil mapping (DSM) techniques. Two prediction techniques; multi-linear regression and 

multi-linear regression kriging have been used. Seventy-five percent (75%) of soil sample data have been used for 

model(s) calibration while 25% for model(s) validation. Various variables including terrain attributes, climate data, land 

use and soil properties data are used in the prediction. Results indicate that multi-linear regression model has a lower R2 

of 37.4% compared to multi-linear regression kriging, with R2 of 42.3%. The results further show that the western parts 

of eastern Mau (largely forest land) has the highest concentration of SOC, while lowest SOC concentration is observed 

on the eastern section (largely crop land). The study demonstrates that multi-linear regression kriging performs better than 

multi-linear regression in capturing the spatial distribution of SOC across the study area. 

 

Keywords: soil organic carbon, digital soil mapping, multi-linear regression, multi-linear regression kriging, Eastern 

Mau forest 

   

1. Introduction 

 

Forest reserves are most affected by human population for 

settlement and agricultural activities. The SOC pool, 

estimated at 1,550 Pg to 1-meter depth is about twice the 

atmospheric pool or 2.8 times the biotic pool (Batjes, 

1996). Soil organic matter contains 58% carbon on average 

(Chan, 2008) and is essential in regulating climate, water 

supplies and biodiversity which are vital to human well-

being (Kumar et al., 2016). 

 

Countries which are signatories to the United Nations 

Framework Convention on Climate Change (UNFCC) 

under the Kyoto protocol are expected to monitor changes 

in the soil organic carbon (SOC storage) within their 

countries (Razakamanarivo et al., 2011). Consequently, 

better and accurate techniques for estimation of SOC 

concentration are necessary to inform policy making on 

actions that enhance organic carbon storage and suggest 

measures to counter areas with depreciating SOC storage. 

The recent development of geospatial technologies has 

allowed for a spatial quantitative prediction approach 

involving modeling of continuous soil properties (based on 

factors of soil formations) besides the assessment of 

accuracy and uncertainties of the predictions. This 

approach referred as digital soil mapping (Mora-Vallejo et 

al., 2008) is much better compared to the conventional 

mapping techniques which only generate qualitative maps 

whose accuracy cannot be assessed. The conventional 

method(s) use polygons which do not consider spatial 

variability within an area because a whole polygon is 

normally given a constant value. 

 

Soil organic matter (SOM) makes up just 2-10% of soils 

mass but has a critical role in physical, chemical and 

biological function of agricultural soils. SOM is formed by 

decay of organic material that enters the soil system. Soil 

organic carbon (SOC) is the major constituent of SOM. 

SOC is normally expressed as a percentage carbon by 

weight, that is, g C per 100 g of soil (Chan, 2008). 

 

In Kenya, deforestation has led to a decline in most of the 

forest reserves, leaving only five major water towers, 

which are closely monitored for ecosystem sustainability. 

This paper identifies possible significant covariates to be 

used in the prediction model(s) and generates predicted 

SOC concentration map using multi-linear regression and 

multi-linear regression kriging techniques in eastern Mau 

forest. 

 

The study area (eastern Mau forest reserve) is in Nakuru 

County, Kenya. It lies between latitudes 00 15’ S and 00 40’ 

S and longitudes 350 40’E and 360 10’E as shown in figure 

1. It has an area of approximately 650 km2, with an 

elevation ranging from 2,210 to 3,070 m. The climate is 

cool and humid with an average of 93.5 mm of annual 

precipitation and a mean annual temperature ranging from 

9.8 to 17.5o C. The Njoro and Naishi rivers drain from the 

eastern slopes into Lake Nakuru, while River Nessuiet 

flows northwards into Lake Bogoria. The major land uses 

are forest, agriculture and grassland. Despite the rampant 

deforestation and degradation experienced since mid-

1990s, because of illegal logging, charcoal burning and 

encroachment of approximately 61,023 ha for human 

settlement (UNEP, 2009), eastern Mau forest remains the 

largest Afromontane forest in Eastern Africa. 

 

2. Theoretical background of digital soil mapping  

 
Digital soil mapping (DSM) technique is defined by 

(Lagacherie and McBratney, 2007) as “the creation and 
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population of spatial information systems by numerical 

models inferring the spatial and temporal variation of soil 

types and soils properties from soil observation and 

knowledge from related environmental variables”. DSM is 

like conventional soil mapping except that the functional 

relationship between the soils attributes and model factors 

are formulated using statistical models rather than 

conceptual models (Thompson et al., 2012). These 

statistical models are fitted using geo-referenced soil data. 

We discuss some models in the following sections. 

 

2.1 State factors or CLORPT model 

For the latter half of 20th century, scientific rationale for 

soil mapping has been the state factors or CLORPT model, 

which stands for (CL=climate, O=organisms, R=relief, 

P=parent material, and T=time). The logic of CLORPT 

model was based on the equation of Jenny (Jenny, 1992) 

and formulated from the recognition of the factors of soil 

formation. The state factor equation can be expressed as, 

 

( , , , , )S f cl o r p t     (1) 

where, S  represents the soil, considered to be a function 

of ( cl ) climate, organism ( o ) or vegetation, relief ( r ), 

parent material ( p ) acting through time ( t ). 

 

The Jenny equation illustrates that by correlating soil 

attributes with observable difference in one or more of the 

state factors, a function ( )f  or model can be developed 

that explains the relationship between the two, which can 

be used to predict soil attributes at new locations when the 

state factors are known. However, the state factors do not 

constitute factors that institute pedogenic processes. 

 

2.2 SCORPAN model 

In the last decade, McBratney et al., 2003 generalized and 

formulated a new equation with the objective of modeling 

the variables responsible for the processes of soil 

formation, through an empiric quantitative description of 

the relationships among other spatially geo-referenced 

factors which are used as spatial prediction functions. It is 

an improvement of Jenny equation, the scorpan model is 

expressed as, 

 

              ( , , , , , , )S f s c o r p a n                            (2) 

 

where, ( s ) is the soil attributes, ( a ) represent the age or 

time factor and ( n ) the space or spatial position.  The other 

symbols have their usual meanings as given in equation 1.  

 

This model differs from the clorpt as it is intended for 

quantitative spatial prediction rather than explanation, this 

distinction justifies the inclusion of soil and space as 

factors because soil attributes can be predicted from other 

soil attributes and spatial information (Thompson et al., 

2012). 

 

 
Figure 1: Eastern Mau forest reserve. 

 

2.3 Geostatistics 

Geostatistics offers a way of describing the spatial 

continuity of natural phenomena and provides adaptations 

of classical regression techniques (Hengl, 2009). 

Geostatistics is used to predict values of a sample variable 

over the whole area of interest as it is used in combination 

with various geospatial Information Systems (GIS) layers. 

Geostatistics differs from the conventional statistics in that 

in the later the samples taken from a statistical community 

are independent from each other and the presence of one 

sample does not show any information about the next 

sample. While in geostatistics the spatial structure or 

correlation among variables in a region are investigated 

(Abadi et al., 2015), with the use of semi-variograms to 

quantify spatial autocorrelation. 
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We discuss only one type of interpolation technique here, 

Kriging. Kriging is one of the geostatistical methods, 

based on the theory or regionalized variables and 

variogram model. It is considered as the best linear 

unbiased predictor (BLUP) that satisfies a certain 

optimality criterion. It is named after a South African mine 

engineer D.G. Krige who used the technique in the mining 

industry in the early 1950’s as a means of improving ore 

reserve estimation (Krige, 1951).  Kriging is a suitable 

method in the presence of spatial dependence as it is 

beneficial to model the deterministic component of soil 

spatial variation as a function of the environmental 

covariates and the stochastic component (Thompson et al., 

2012). 

 

We now describe ordinary kriging and regression kriging. 

Ordinary kriging is often regarded more appropriate 

interpolation technique, as it adapts to local fluctuation of 

the mean by limiting the domain of stationarity of the mean 

to the local neighborhood (Mulder et al., 2011). Ordinary 

kriging is used to improve the prediction by interpolating 

the environmental variables. On the other hand, 

Regression kriging is a hybrid method that combines either 

a simple or multi-linear regression (MLR) model with 

ordinary kriging of the regression residuals. 

 

Multi linear regression is commonly used in up-scaling 

approach to model the linear relationship between 

independent variable and secondary variables (predictors). 

However, MLR generates a process which is stationary 

and assumes the residuals are identical and independently 

distributed. Errors associated with MLR are large since the 

approach does not consider the varying relationship 

between the environmental variable and the SOC across 

space (Ge et al., 2007). 

 

Regression kriging (RK) involves the use of 

environmental variables as it consists of three components, 

it can be expressed as (Zhang et al., 2012), 

 

                  
* ' ''

( ) ( ) ( )S S SZ Z E E                       (3) 

                 

where, ( )SZ is the RK prediction formed by summing the 

regression prediction from the covariates, 
*

( )SZ  is the 

deterministic component (ordinary kriging of the 

residuals), 
'

( )SE  is the stochastic component and 
''

E is the 

pure noise. 

 

In this study, multi linear regression and multi-linear 

regression kriging techniques have been used to predict 

SOC concentration based on other similar studies (Mora-

Vallejo et al., 2008; Sumfleth and Duttmann, 2008). Peng 

et al., 2013 indicate that the use of multi linear regression 

model is simple and direct. 

 

3. Materials and methods  

 

3.1 Soil data 

Two hundred and twenty (220) soil samples of soil organic 

carbon, clay, sand and silt (up to 30 cm depth) were 

provided by the Kenya soil survey. The soil samples were 

georeferenced within the study area, the soil samples were 

then randomly divided into two, that is, 75% calibration 

set, and 25% validation set. Figure 2 shows the distribution 

of SOC data points in the study area. 

 

 
Figure 2: Distribution of SOC data points. 

 

3.2 Auxiliary data 

Various sources of data retrieved and analyzed to capture 

the spatial variation of the soil forming factors in the study 

area included climate, normalized difference vegetation 

index (NDVI) and digital elevation model (DEM). The 

mean annual temperature and precipitation on a 30 arc-

second raster data were obtained from 

www.worldclim.org. The datasets were resampled to 30 m 

resolution (admittedly with some errors). Multi-spectral 

remote sensed satellite imagery data (Landsat 5) was 

obtained from http://earthexplorer.usgs.gov/. Landsat 5 

was selected because soil sample were collected in 2011.  

Subsurface reflectance band values were used in 

calculating NDVI values using the following expression, 

 

                   NIR R
NDVI

NIR R





                        (4) 

where, R  and NIR  are the Red and Near Infrared bands 

respectively (Rouse et al., 1993). The land cover of the 

study area was also generated from the relevant bands.  

A 30 m Shuttle Radar Topographic Mission (SRTM) data 

was obtained from www.jpl.nasa.gov, it was used to derive 

different topographic attributes as aligned with relief as 

part of soil forming factors. The parameterized derivatives 

included elevation, slope, aspect, plan curvature, profile 

curvature and flow accumulation. Topographical Wetness 

Index (TWI) which is a secondary topographic derivative 

was also used. The equation used for TWI is given as 

(Wilson and Gallant, 2000), 
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( )

tan( 57.29577951)

In flow accumulation
TWI

slope



                (5) 

 

3.3   Selection of explanatory variables for predictive 

        model  

The SOC calibration dataset was used to extract points 

from the co-variables through map overlay. The extracted 

co-variable-values were then linearly regressed against the 

response variable (SOC). Regression analysis is essential 

in characterizing the relationship between the predictors 

and response variable, also it is used in estimating their 

correlation. Stepwise regression analysis using Akaike 

Information Criterion (AIC) was applied on the initial 

model to obtain a reduced model, which accomplishes a 

desired level of prediction with as few predictor variables 

as possible (Akaike, 1973). The best model has the 

smallest AIC value. The coefficients of the reduced model 

were fitted into a multi-linear regression equation to map 

the spatial distribution of SOC concentration, using the 

following expression (Kumar and Lal, 2011), 

    0 1 1 2 2 ..... k kY B B X B X B X e              (6)  

where, Y  is the SOC concentration, 0B is the Y intercept 

(a constant term)  kB  are model coefficients, kX  are 

independent variables, and  e   is an error of disturbance. 

 

3.4 Spatial structure of the model 

The residuals obtained from the reduced regressed model 

were assessed and fitted into a semi variogram. The nugget 

to sill ratio was then used to characterize the importance of 

the random component and provide quantitative measures 

of spatial dependence. The residuals were interpolated 

using kriging to incorporate the spatial correlation of the 

errors of the multi-linear regression model. 

 

The final prediction map was obtained by spatial overlay 

of the multi-linear regression model surface with the 

kriged interpolated residual surface in a regression kriging 

approach (equation 3). Validation test using mean error 

(ME), root mean square error (RMSE) and coefficient of 

determination (R2) were performed to both models to 

evaluate the prediction accuracy. 

 

4.    Results and discussion 

 

4.1 Modelling results 

Results of the multi linear regression analysis of various 

covariates indicated that the covariables could account for 

56% of SOC concentration variability within the study 

area. The results from the stepwise regression analysis are 

shown in table 1. 

 

Model number four (4) had the lowest AIC values (Table 

1). The coefficients of the model parameters were 

determined and the reduced multi linear regression model 

obtained as, 

7.2832 ( 0.0895468 )SOC Silt       

( 0.771998 4) (68.5149 1)band band      

(9.2718 ) (0.0019903 )NDVI flow accumulation   

(0.003212 )elevation                                        (7) 

 

 where SOC and NDVI have the same meanings as earlier 

defined. 

 

Model parameters such as silt concentration, NDVI, flow 

accumulation and elevation are given in figures 3, 4, 5 and 

6 respectively.  We also present rainfall, sand soil 

concentration and major land use/cover in figures 7, 8 and 

9 respectively. 

 

Table 1: Model parameters with their AIC values. 

Model Covariables AIC 

values 

1 TWI, Slope, Curvature, plan 

curvature, rainfall, sand, 

NDVI, band 1,4,5, Elevation, 

Silt, flow accumulation 

39.34 

2 Plan curvature, rain, flow 

accumulation, NDVI, Silt, 

band 1,4,5, Elevation 

36.50 

3 Rain, Elevation, band 1,4,5, 

NDVI, Silt, Sand, flow 

accumulation 

35.15 

4 Rain, Sand, Band 1,4, flow 

accumulation, NDVI, Silt, 

Elevation 

34.88 

 

 
Figure 3: Silt concentration distribution (units in %). 

  

Using equation 7, the reduced multi linear regressed SOC 

surface was generated as shown in figure 10. The residuals 

were then assessed if they fulfilled the requirements for 

spatial dependence i.e. they should not be biased and 

should have a uniform distribution. This assessment was 

done through fitting the residuals into a histogram and 

normal quarter quantile plot, the residuals certified the 

requirements. The residuals were then fitted into an 
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experimental semi-variogram with a spherical function, to 

measure the spatial dependence using the nugget effect (N) 

to sill (S) ratio. 

 

 
Figure 4: Normalized difference vegetation index 

(NDVI). 

 

 
Figure 5: Flow accumulation. 

 

The N:S ratio was 56.34% which indicated a moderate 

spatial dependence of the residuals. The high nugget value 

as shown in table 2 indicated the measurement error within 

the data. It also meant that the distance between sample 

points were far apart lowering the spatial dependence of 

the residuals. 

 

Table 2: Semi-variogram parameters of the residuals. 

 Nugget Sill Nugget/sill 

SOC residuals 0.54 0.9657 0.56 

 

 

 
Figure 6: Elevation (units are in m). 

 

 
Figure 7: Mean annual rainfall (units are in mm). 
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Figure 8: Sand soil concentration (units are in %). 

 

 
Figure 9: Major land use/cover. 

 
Figure 10: Reduced regressed surface of SOC 

concentration (units are in %). 

 

The residuals were then interpolated using ordinary 

kriging as shown in figure 11. The reduced multi-linear 

regressed model surface and the kriged surface maps were 

spatially overlaid to obtain the final regression kriged 

surface of SOC concentration (Figure 12).  

 

 
Figure 11: Interpolated residual surface. 
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Figure 12: Regression kriged surface of SOC 

concentration (units are in %). 

 

4.2 Model assessment 

Fifty-five independent SOC data points were used for 

validation of the two models. The results of the validation 

are given in table 3. The R2 of the regression and regression 

kriging models are 37.38 and 42.25%, respectively. The 

better performance by regression kriging (RK) is because 

it considers uncertainty due to regression and 

measurement in the form of kriged variables compared to 

the regression model.  

 

The low R2 (42.25%) of the overall RK model can be 

attributed to the moderate spatial structure of the residuals 

and errors due to the interpolation of datasets. In table 3, 

RK model had a lower ME (0.2794) compared to the 

regression model (0.3304). The RK model also had a better 

RMSE value (1.3970) compared to the regression surface 

RMSE value (1.4590).  From the validation, the regression 

kriging model proved to be a better prediction technique in 

the study area. 

 

Table 3: Statistics of models’ assessment. 

  Regression Regression 

kriging 

Minimum difference  0.0392 0.0690 

Maximum difference 5.5494 4.9121 

Mean difference 0.3304 0.2794 

RMSE 1.4590 1.3970 

R2 0.3738 0.4225 

 

4.3 Discussion 

The spatial distribution of regression-kriging showed that 

SOC concentration decreased from the western section to 

the south-eastern section in the forest reserve, as shown in 

figure 12. The spatial distribution of SOC concentration in 

the study area could be predicted using terrain attributes, 

soil, texture, climate and land use. 

 

Band 4 and band 1 (Landsat data) were significant 

variables in estimation of SOC concentration, band 4 

captures the near infrared reflectance which distinguishes 

vegetation varieties and conditions while band 1 provides 

information capable of differentiating soil and rock 

surfaces from vegetation. From the two bands, areas which 

have vegetation cover tend to have higher concentration of 

SOC compared to bare soil and rock surfaces. 

 

A comparison of the final SOC prediction map (Figure 12) 

with the land use/cover map (Figure 9), reveals that SOC 

concentration is relatively higher in the forest areas and 

lower in the cropland areas. These results show that land 

use/cover type has a significant impact on the spatial SOC 

concentration patterns. This can be attributed to the fact 

that forest land fix plentiful SOC because of the flourishing 

soil plant roots and thicker forest litter layers, which are 

easily absorbed and beneficial to SOC. In cropland, there 

is continuous tillage exposing the nutrient for 

decomposition leading to decrease in the SOC 

concentration. 

 

High elevation regions also recorded high SOC 

concentration, this is because the high-altitude areas had 

low temperatures which lower nutrient decomposition and 

these areas have low human interference, compared to 

areas of lower elevation which have increased 

anthropogenic activities which expose soil organic carbon 

for decomposition. 

 

5.  Conclusions 
 

This study compared two prediction techniques (multi-

linear regression and multi-linear regression kriging) in 

predicting soil organic carbon concentration in the eastern 

Mau forest reserve. The two models were calibrated and 

verified using independent validation datasets. Results 

show that multi-linear regression model has a lower R2 of 

37.4% compared to multi-linear regression kriging 

(42.3%). The western part of eastern Mau, largely forest 

land, has the highest concentration of SOC, while lowest 

SOC concentration is observed on the eastern section, 

largely crop land. Given the characteristics of the study 

area, the number of observations used and data 

distribution, the prediction of SOC by multi-linear 

regression kriging is satisfactory. These results can be 

improved by accurate selection and representation of soil 

formation factors and related spatial residuals. 
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