
Journal of Geomatics  Vol. 13, No. 1, April 2019  

© Indian Society of Geomatics  

Modelling uncertainties in differential global positioning system dataset 
 

I. Yakubu1* and I. Dadzie2 

1Department of Geomatic Engineering, University of Mines and Technology, Tarkwa, Ghana 
2Department of Geomatic Engineering, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana 

*Email: yissaka@umat.edu.gh 

 
(Received: Jan 18, 2019; in final form: May 07, 2019) 

 

Abstract: The quest for precision and accuracy in Differential Global Positioning System (DGPS) data requires modelling 

uncertainties in the data collected and eliminating outliers which hinder the precision and accuracy. In this paper, dual 

frequency DGPS receivers’ dataset collected repeatedly over a control station at thirty (30) minutes interval were 

mathematically modelled for uncertainties using five soft computing and classical methods namely: Backpropagation 

Artificial Neural Networks (BPANN), Generalised Regression Neural Networks (GRNN), Multivariate Adaptive 

Regression Splines (MARS), Radial Basis Functions Neural Network (RBFNN), and Total Least Square. The results 

revealed that all the models produced were satisfactory. The Mean Horizontal Error (MHE), Root Mean Square Error 

(RMSE), and Standard Deviation (SD) performance criteria indices were applied. GRNN outperformed BPANN, MARS, 

RBFNN, and TLS in modelling DGPS data uncertainties. In terms of their mean horizontal displacement and standard 

deviation, GRNN achieved 4.5314E-11 m and 1.3200E-13 m compared to TLS, BPANN, MARS and RBFNN which 

achieved: 7.3901E-06 and 8.7500E-14; 2.8311E-06 and 2.2300E-08; 0.0088 m and 3.3158E-05 m; and 1.2016E-04 m 

and 1.2195E-06 m respectively. It can be concluded that all the models used can be applied in detecting and eliminating 

uncertainties in DGPS data. There is therefore, the need to apply these methods in modelling uncertainties in DGPS 

applications in sensitive areas such as deformation monitoring of high rise buildings, bridges and dam embarkment.  
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1. Introduction 

 

In recent years, the use of Global Positioning System 

(GPS) for positioning has gained more grounds than the 

traditional surveying techniques which required the use of 

a theodolite or total station. Schuessler and Axhausen 

(2009), conducted a research and concluded that 

Differential Global Positioning Systems (DGPS) has 

provided surveyors with more accurate results than the 

traditional techniques. The use of the DGPS help pinpoints 

satellite locations of interest. Most of the GPS data has to 

be processed before becoming meaningful to the user. 

Hence, scientists and engineers find the term post-

processed GPS data appropriate to describe GPS data 

which is not processed directly on the field, rather obtained 

after some processing in the office.  

 

Nonetheless, the use of the GPS receivers come with some 

restrictive conditions including hazy weather conditions, 

shade, an insufficient number of required satellites for 

positioning. These conditions cause a delay in obtaining 

position information of the observation point thereby 

causing long observational periods and introduce errors 

into the observed data.  

 

These errors, classified as either parametric or non-

parametric, need to be removed or minimized with the use 

of statistical tools such as the box and whisker plot (box 

plot) and the modified z-score which could be used to 

identify outliers in a given dataset (Ben-Gal, 2005). 

Outliers are blunders which are committed on the field and 

are non-adjustable. They have to be eliminated from 

datasets since they are either the very small or big values 

identified during data analysis (Carlson and Goodman, 

2014). On the other hand, systematic errors which are 

usually fixed and have a mean of zero (0) follow a pattern, 

and hence are predictable. Random errors are considered 

the remaining errors after all other errors have been 

removed (Filzmoser, 2004). 

 

Least square regression models invented by Gauss (1823) 

have been applied for solving majority of problems in 

geoscientific field, notably adjustment of DGPS survey 

networks (Yakubu et al., 2018; Peprah and Mensah, 2017; 

Ansah, 2016; Annan et al., 2016; Okwuashi and Eyoh, 

2012), determination of GPS coordinate transformation 

parameters (Ziggah et al., 2013), and datum 

transformation parameters (Ziggah et al., 2016) with the 

purpose of identifying and eliminating the uncertainties in 

the datasets. However, (Acar et al., 2006) noted that some 

outliers in some datasets still remain after adjustments 

mainly due to inefficiencies of the mathematical models to 

eliminate the outliers. This study, therefore, seeks to 

investigate more sophisticated and advanced models for 

data pruning, denoising and eliminating outliers or 

uncertainties in DGPS datasets. 

 

The invention of soft computing techniques has 

revolutionized data pruning and adjustment mainly 

because they have the capabilities to denoise datasets 

(Kutoglu, 2006) and give better accuracy in points 

estimation (Akyilmaz et al., 2009) and have been applied 

to solve numerous scientific problems including 

improving classification (Sharma et al., 2015; Kumar et 

al., 2014), adjusting DGPS networks (Yakubu et al., 

2018), modeling stream networks (Achour et al., 2012), 

earthquake modelling (Pinho et al., 2008), landslide 

modelling (Zahra, 2010), coordinate transformation 

(Ziggah et al., 2016), GPS height conversion (Fu and Liu, 

2014; Liu et al., 2011), geodetic deformation modelling 

(Bao et al., 2011; Du et al., 2014; Maxime et al., 2005), 

earth orientation parameter determination (Liao et al., 

2012), estimating energy demand (Alreja, et al., 2015), 

slope stability analysis (Samui, 2013; Lall et al., 1996). 
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In this study, soft computing techniques such as 

Backpropagation Artificial Neural Networks (BPANN), 

Generalised Regression Neural Networks (GRNN), Radial 

Basis Functions Artificial Neural Networks (RBFNN), and 

Multivariate Adaptive Regression Splines (MARS) were 

used in modelling the uncertainties in DGPS datasets. The 

performances of these soft computing techniques were 

compared with classical techniques such as Total Least 

Squares (TLS) which has the capability to adjust errors in 

both the observation and design matrices (Acar et al., 

2006), and recommendations made. 

 

2. Resources and methods used 

 

Tarkwa is the study area (Figure 1) which located in the 

Western Region of the Republic of Ghana (Asklunel and 

Eldvall, 2005) with geographic coordinates between 

longitude 2˚ 10´ 00ʺ W - 1˚ 45´ 00ʺ W and latitude 4º 

30´00ʺ N - 5º 25´ 00ʺ N with an average topographic height 

of about 78 m above Mean Sea Level (MSL). 

Geographically, the topography is generally undulating 

with steep slopes parallel to each other and to the strike of 

the rocks in the north-south direction (Kortatsi, 2004). The 

type of coordinate system used in the study area is Ghana 

projected grid derived from the Transverse Mercator with 

1º W Central Meridian and the WGS84 (UTM Zone 30N) 

(Yakubu et al., 2018; Peprah et al., 2017). Tarkwa is a 

mining town, with three major mining companies, namely: 

Goldfields Ghana Limited, Tarkwa Mine; AngloGold 

Ashanti, Iduaprim Mine and Ghana Manganese Company 

Limited, Nsuta. 

 

DGPS survey was carried out on a known control in 

Tarkwa, the study area. The DGPS field observations were 

conducted at 30-minute intervals over the same control to 

obtain one hundred and four (104) redundant coordinates 

data for the control. These observations were made to 

check the consistency of the output data for the same 

position. The base station was a Continuous Operating 

Reference Station (CORS) located at the University of 

Mines and Technology, Tarkwa. 

 

One of the contributing factors affecting the estimation of 

accuracy is related to the quality of datasets used (Devi and 

Karthikeyan, 2015; Dreiseit and Ohno-Machado, 2002; 

Ismail et al., 2012), several precautions including time of 

observation, avoiding overhead cables, multipath errors 

(Yakubu and Kumi-Boateng, 2011) were considered to 

ensure the reliability of the observed datasets. Table 1 

shows sample DGPS dataset used in modelling the 

uncertainties

 

 
Figure 1: Study area 
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Table 1: Sample of data used for the study (Units in meters) 

SN Easting (E) Northing (N) Elevation (Z) SN Easting (E) Northings (N) Elevation (Z ) 

1 163364.5833 69577.1700 76.1957 11 163364.7337 69577.1290 76.3378 

2 163364.5338 69577.1707 76.2743 12 163364.5816 69577.1695 76.1958 

3 163364.2055 69577.2139 76.2182 13 163364.5829 69577.1701 76.1997 

4 163364.3048 69577.3004 75.6254 14 163364.5169 69577.1430 76.1977 

5 163364.4388 69577.2636 75.1524 15 163364.5776 69577.2190 75.7588 

6 163364.5803 69577.1708 76.2003 16 163364.5784 69577.1706 76.1886 

7 163365.1671 69576.8470 76.4418 17 163364.5882 69577.2844 76.6442 

8 163364.3452 69576.9806 76.1168 18 163364.5821 69577.1674 76.1937 

9 163364.5871 69577.1773 76.2827 19 163364.5820 69577.1680 76.1889 

10 163364.5821 69577.1703 76.2027 20 163364.7380 69577.1282 75.8962 

 

 

2.1 Methods 

2.1.1 Outlier Detection 

All DGPS data were filtered and cleaned for errors arising 

from dilution of precision, inadequate number of satellites 

during observations etc, as advised by Schuessler and 

Axhausen (2009).  Techniques like the Grubb’s Test, 

Tietjen-Moore Test, Generalised Extreme Studentized 

Deviate (ESD) Test (Anon., 2013) were applied to remove 

outliers. Probability plots of the eastings, northings and 

elevations were conducted to show their central tendencies 

as shown in figures 2, 3 and 4. 

 
Figure 2: Probability plot of easting coordinates 

 

 
Figure 3: Probability plot of northings coordinates 

 

 
Figure 4: Probability plot of elevations 

 

 Error Fitting 

A Gaussian distribution fit was applied to the dataset to 

monitor the distribution of the errors. Figures 5, 6 and 7 

show the plots of the error distribution. 

 
Figure 5: Error fitting for eastings 
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Figure 6: Error fitting for northings 

 
Figure 7: Error fitting for elevations  

 

The fits were realized to be skewed with the summary 

statistics shown in table 2. 

 

Table 2: Summary statistics for error distribution 

curve 

Coordinate 

Parameter 

Skewness 
Standard 

Deviation 

X -2.7795 2.7459 0.0764 

Y 4.2465 -4.1948 0.0505 

Z 3.5389 -3.4934 0.1330 

 

2.1.2 Backpropagation Artificial Neural Network 

(BPANN) 

The BPANN training algorithm involves three stages: the 

input layer, hidden layer and output layer. In this study, the 

input variables were the Eastings, Northings, and 

Elevations denoted as (Ei.j. Ni.j. Zi.j) and the output 

variables were the Eastings and Northings denoted as 

(Eoutput, Noutput). In the BPANN model formulation, the 

dataset is normalized to ensure constant variation in the 

model. The selected input and output variables were 

normalized between the intervals [−1, 1] as presented by 

Equation (1) (Mueller and Hemond, 2013). 

   

 
max min min

min

max min

i

i

y y x x
y y

x x

  
 


         (1)                                                                                                         

where i
y  denotes the normalized data; i

x  is the measured 

GPS dataset values; min
x  and max

x  are the minimum and 

maximum values of the measured GPS dataset with max
y  

and min
y  values set at 1 and -1, respectively. 

 

Bayesian Regularization learning algorithm was used for 

the training to find the optimum weight combination. The 

datasets were divided into training (70 %) and testing 

(29 %). At the point where the error starts to increasing the 

training is stopped (Chakraborty and Goswani, 2017). The 

tansig and purelin activation functions were used for the 

hidden and output layer respectively in the network 

training. BPANN is an iterative training procedure, 

therefore the network was trained varying the number of 

hidden neurons ranging from 1 to 30 until the optimal 

model was achieved. 

 

2.1.3 Radial Basis Function Neural Networks (RBFNN) 

RBFNN model is an unsupervised learning algorithm and 

consist of three layers namely; an input layer, a hidden 

layer and an output layer (Ziggah et al., 2016). The input 

layer is made up of sensory units that connect the network 

to its environment. In the second layer, the only hidden 

layer in the network applied a nonlinear transformation 

from the input space to the hidden space. The output layer 

is linear, supplying the response of the network to the 

activation pattern applied to the output layer. In this study, 

the input variables were the Eastings, Northings, and 

Elevations denoted as (Ei.j. Ni.j. Zi.j) and the output 

variables were the Eastings, Northings and Elevations 

denoted as (Eoutput, Noutput,  Zoutput). The dataset used for the 

formulation of the model were divided as training data 

which consist of 60 % of the total dataset and testing data 

which consists of 29 %. RBFNN is an exact interpolator 

(Erdogan, 2009), hence a linear function is used in the 

input neurons and the connection between the input and 

hidden layers are not weighted (Kaloop et al., 2017). In 

this presented study, the Gaussian function is applied, and 

the output neuron is a summation of the weighted hidden 

output layer given by Equation (2) (Erdogan, 2009) as 

1

( ) ( )
n

j j

j

y x x 

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where n is the number of hidden neurons, 
Mx R  is the 

input, j
  are the output layer weights of the radial basis 

function network, ( )
j

x  is Gaussian radial basis function 

given by Equation (3) as (Srichandan, 2012; Idri et al., 

2010): 
2
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where 
M

jc R  and   are the centre and width of jth 

hidden neurons respectively,  denotes the Euclidean 

distance. 
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2.1.4 Generalized Regression Neural Networks 

(GRNN) 

GRNN) is a different kind of Radial Basis Function Neural 

Network (RBFNN) which is based on Kernel regression 

networks (Hannan et al., 2010) with one pass learning 

algorithm and highly parallel structure (Dudek, 2011). It 

comprises of four layers namely; input layer, pattern layer 

(radial basis layer), summation layer, and an output layer. 

It was developed by Specht (1991). In this study, GRNN 

is being adopted and applied on DGPS dataset to model 

uncertainties. The input variables were the Eastings, 

Northings, and Elevations denoted as (Ei.j. Ni.j. Zi.j) and the 

output variables were the Eastings and Northings denoted 

as (Eoutput, Noutput). The number of input units in the first 

layer depends on the total number of the observational 

parameters. The first layer is linked to the pattern layer and 

in this layer, each neuron is being presented by a training 

pattern and its output. The pattern layer is connected to the 

summation layer. The summation layer consists of two 

different types of summation namely, single division unit 

and summation unit (Hannan et al., 2010). The summation 

with output layer combined perform a normalization of 

output datasets. In training of the network, radial basis and 

linear activation functions are used in hidden and output 

layers. Each pattern layer unit is connected to two neurons 

in the summation layer. One neuron unit computes the sum 

of the weighted response of the pattern, and the other 

neuron unit computes unweighted outputs of pattern 

neurons. The output layer divides the output of each 

neuron unit by each other yielding the predicted output 

variables (Equation (4)): 
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where yi is the weighted connection between the ith neuron 

in the pattern layer and the summation neuron, n is the 

number of training patterns, G is the Gaussian function 

given by Equation (5) as 
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where m is the number of elements of an input vector, x1 

and x1k are the jth elements of x and xi  respectively. During 

the network training, the spread parameter was varied 

between 0 and 1 until the output with minimal residuals in 

terms of statistical analysis was achieved. This same 

procedure was also done when training the RBFNN. 

 

2.1.5 Multivariate Adaptive Regression Splines 

(MARS) 

The MARS is nonparametric regression technique which 

works by dividing the variables into regions, producing 

each region as a least squares equation (Friedman, 1991; 

Leathwick et al., 2005). Unlike Ordinary Least Squares, 

MARS assumes no functional relationship between the 

target and the predictor variables. The MARS model 

employed in this study is adopted from the work of Samui 

and Kurup (2012). The estimation of MARS model is 

developed in two steps. In the first step (the forward 

algorithm), MARS is estimated with an excessive number 

of knots in order to get a better estimate of the predictor 

variable (Samui and Kim, 2012). In the second step, the 

knots that contribute significantly to the overall estimation 

are retained whiles eliminating the less significant once. 

To ensure the goodness of fit, the Generalized Cross-

Validation (GCV) is use to remove the redundant basis 

functions (Samui and Kothari, 2012; Craven and Wahba, 

1979). In this present study, the Salford Predictive Model 

(SPM) software was adopted to train the MARS model 

(Yakubu et al., 2018). 

 

2.1.6 Total Least Square (TLS) 

TLS is an iterative least squares estimation technique of 

determining the structure and estimating unknown 

parameters of a given model (Golub and Van Loan, 1980). 

In TLS, the orthogonal function estimates the model’s 

parameters one at a time. Also, the percentage reduction 

with respect to the average of the squared residuals as well 

as the relative contribution of each term is estimated. 

Therefore, TLS takes into account the observational errors 

on both target and the predictor variables which in 

literature, gives more accurate results (Golub and Van 

Loan; 1980; Yanmin et al., 2011). The implementation of 

TLS technique in this study is adopted from Yakubu et al. 

(2018). The adequacy of the estimated model will be tested 

to ascertain its overall fitness. 

 

2.1.7 Models performance assessment 

It is very essential to assess and validate the performance 

of each estimated model so as to establish whether the 

model is optimal. This study employs three of the 

frequently used Performance Indicators (PIs) such as the 

Root Mean Square Error (RMSE), Mean Horizontal Error 

(MHE), and Standard Deviation (SD) (Yakubu et al., 

2018). The selected PIs will be used in selecting the 

optimal model to represent each technique considered in 

this study. After the selection of the optimal models, the 

best of the techniques for modelling the uncertainties will 

be selected based on the technique (s) accounting for the 

least errors. 

 

3. Results and discussion 

 

Statistical methods and analysis were applied to prune the 

dataset in order to detect and eliminate outliers. The 

statistical analysis of the two-dimensional shift of the 

observed data are tabulated in table 3 and table 5. From the 

tables, it can be observed that the points gradually deviate 

from their true position. This can be due to the shift in the 

earth crust, delayed in the transmission of the propagated 

signal, or the type of the instrument used. This can cause 

serious problems in higher engineering works which 

requires a high degree of precision and accuracy. 
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Table 3: Model results for soft computing techniques (units in meters) 

BPANN (Eastings) 

PCI ME RMSE SD 

Training -8.8485E-08 3.0680E-06 8.0400E-09 

Testing -3.6570E-06 1.7798E-05 9.5000E-08 

BPANN (Northings) 

PCI ME RMSE SD 

Training 3.2645E-07 2.5749E-06 5.1000E-09 

Testing 5.2468E-08 8.5937E-07 9.1200E-09 

RBFNN (Eastings) 

PCI ME RMSE SD 

Training 1.1974E-10 3.0754E-06 9.3500E-09 

Testing -3.9056E-04 1.9850E-03 1.3456E-05 

RBFNN (Northings) 

PCI ME RMSE SD 

Training 1.0394E-12 3.0449E-07 3.2200E-10 

Testing 1.4257E-05 5.4049E-05 3.6000E-07 

GRNN (Eastings) 

PCI ME RMSE SD 

Training 2.0789E-12 4.9562E-11 8.1300E-13 

Testing 8.0286E-12 4.5858E-11 3.4100E-12 

GRNN (Northings) 

PCI ME RMSE SD 

Training 6.2365E-13 1.9755E-11 9.0400E-15 

Testing -5.0179E-12 1.9486E-11 1.2200E-12 

MARS (Eastings) 

PCI ME RMSE SD 

Training 0.0012 0.0047 5.7164E-05 

Testing -0.0132 0.0742 0.0003 

MARS (Northings) 

PCI ME RMSE SD 

Training -0.0005 0.0024 1.9578E-05 

Testing 0.0009 0.0023 7.4954E-05 

 

The optimal equation for modelling the uncertainties in 

both the Eastings and Northings is given by Equation 6 and 

Equation 7 respectively. The basis functions used is 

tabulated in table 4. 

 

𝐸_𝑖 = 163364 + 1 × 𝐵𝐹11.98271𝑒^(−005) × 𝐵𝐹2 +
2.0567𝑒^(−005) × 𝐵𝐹6 (6) 

 

𝑁_𝑖 = 69576.8 + 1 × 𝐵𝐹1 + 2.92989𝑒^(−005) ×
𝐵𝐹2 − 3.6429𝑒^(−005) × 𝐵𝐹4 + 7.69176𝑒^(−006) ×
𝐵𝐹12 (7) 

 

Table 4: Basis functions used by the MARS model 

Eastings Northings 

BF1 = max (0, E-163364); BFI = max (0, N-69576.8); 

BF2 = max (0, E -163365); BF2 = max (0, N-69577.2); 

BF6 = max (0, E-163365); BF4 = max (0, N-69577.2); 

 BF12 = max (0, N-69577.2); 

 

Table 5: Results for all models (units in meters) 

Model MHE RMSE SD 

TLS 7.3901E-06 7.3901E-06 8.7500E-14 

GRNN 4.5314E-11 5.2345E-11 1.3200E-13 

RBFNN 1.2016E-04 1.0750E-03 1.2195E-06 

BPANN 2.8311E-06 1.0215E-05 2.2300E-08 

MARS 0.0088 0.0404 3.3158E-05 

4. Conclusions and recommendations 

 

Outliers that remain uncertainties in datasets can affect the 

accuracy of evaluation procedures and estimated 

parameters if not eliminated. Several researchers have 

come up with many mathematical models such as classical 

least squares which have been used for decades. In recent 

times, with the advancement of science and technology, 

soft computing techniques have revolutionized the 

difficulties and deficiencies with the use of classical 

methods due to its capabilities in denoising datasets to 

yield a better estimate than the classical methods. This 

present study assessed the performance of soft computing 

techniques in modelling the uncertainties of DGPS dataset 

of two control stations whose coordinates are known to a 

certain degree of accuracy. The soft computing methods 

adopted were the BPANN, GRNN, MARS, and RBFNN. 

The study also compares the performance of these soft 

computing methods to classical methods such as the TLS 

due to the wide recommendation by researchers about its 

efficiency in modelling dataset to give a better estimate. 

The statistical analysis of the study reveals that all models 

gave satisfactory result in modelling the DGPS dataset. 

GRNN outperformed BPANN, RBFNN, MARS, and TLS 

in modelling the uncertainties in the dataset to give a better 

estimate. It can, therefore, be stated that all the methods 

can be used in modelling uncertainties in DGPS datasets. 
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But with respect to this research the GRNN model has 

demonstrated superiority over the other models. Hence, 

natural and engineered structures being monitored for 

deformation should take into account these methods for 

modelling the uncertainties in the dataset collected. This 

can also be automated and integrated in any deformation 

monitoring process.   

 

This study does not only have a localised significance but 

will also open more scientific discourse into the 

applications of soft computing techniques in solving some 

of the problems in surveying and related disciplines. 
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