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Abstract: Combining classifiers is essential for feature extraction and mapping applications. This paper proposes an 

approach to improve the performance of one of the most frequently used Multiple Classifier Systems (MCSs), namely 

the Fuzzy Majority Voting (FMV). First, a set of texture attributes has been generated from a 0.82mpan-sharpened 

IKONOS image covers the test area. The generated attributes along with the original image have been applied as input 

for three-member classifiers: Artificial Neural Networks (ANN); Support Vector Machines (SVM); and Classification 

Trees (CT). Before combination, a weighting criterion has been determined, based on the performances of each member 

classifier, and assigned to the output of that classifier. After that, The FMV has been applied for combining the 

weighted results from the three-member classifiers to extract buildings (B), roads (R) and vegetation (G). The proposed 

method has been tested and compared with the three-member classifiers as well as the standard FMV. The results have 

been analyzed considering four different aspects: (1) overall accuracy; (2) class accuracy; (3) sensitivity to training 

sample size; and (4) computational complexities. The proposed method resulted in an overall classification accuracy of 

about 95.60%, which is 3.88, 6, 8.51 and 1.24% better than ANN, SVM, CT, and standard FMV respectively. On the 

other hand, most of the class-accuracies are much better and less variable than those obtained by any member classifier 

as well as the standard FMV. While the proposed method is stable and always outperforms individual classifiers even in 

the cases of small size training samples, its computational cost is still comparable with that of standard FMV. 
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1. Introduction  

 

Feature extraction from HR satellite imagery is an 

important task in remote sensing (RS) and geographic 

information system (GIS) applications. However, 

Classification of remotely sensed imagery is still a 

challenge because of the low illumination and low spatial 

resolution of satellite imagery, noise, ambiguity and 

uncertainty in the decision-making process. There is no 

single classifier that can be optimal for all classification 

problems since single classifiers sometimes lead to 

inefficient classification accuracy. Combining classifiers 

can improve the classification accuracy by integrating the 

outputs of multiple individual classifiers through some 

linear or non-linear MCSs (Moustakidis et al., 2012). 

Over the last decade, MCSs can be considered as one of 

the most important advancements in the field of pattern 

recognition (International workshop on multiple classifier 

systems, 2007).  

 

The appropriate combination of individual classifiers 

usually results in better performance in terms of 

classification accuracy and/or CPU time. MCSs can 

outperform any individual classifier in cases of small 

training dataset, local optima problem and a huge amount 

of data (Woz´niak et al., 2014). As well, it can improve 

the performance of weak classifiers and stabilize the 

decision of random ones such as ANN and CT. 

 

On the other hand, the diversity of member classifiers of 

a given MCS can perfectly handle the problem of noisy 

data (Ponti-Jr. and Papa, 2011). It is worth mentioning 

that classifiers with correlated results may provide lower 

accuracy than the worst classifier. In the case of 

correlated classifiers, the MCSs error will be almost the 

same as the average error of the member classifiers. On 

the other hand, it will be n times smaller than the average 

error of the members in the case of statistically 

independent classifiers (Tumer and Ghosh, 1996). In this 

regard, the successfulness of a MCS is based on the 

degree of diversity between individual classifiers. 

Diversity can be achieved by using: different input 

features, different training samples, or different 

classifiers. A detailed review of the most common 

diversity measures is given by Ranawana and Palade 

(2006).Recently, MCSs have been introduced to remote 

sensing applications in: satellite image classification 

(Maulik and Chakraborty, 2010); land cover mapping 

(Han et al., 2012); and change detection (Du et al., 2013). 

 

In general, MCSs can be grouped into three categorize: 

parallel; serial; and hierarchical (Lv et al., 2000). In the 

parallel form, the same data are used as input for each 

individual classifier independently, and the final decision 

is made by combining their independent results. In the 

serial form, individual classifiers are applied in sequence. 

This form starts with a primary classifier, the classifier 

with the cheapest computational cost, followed by the 

secondary classifiers, the ones with higher computational 

cost (Fumera et al., 2004). The hierarchical method 

combines both parallel and serial techniques in order to 

obtain optimal combination results (Ranawana and 

Palade, 2006). The majority of publications are focused 

on the parallel combination approach since it is simple to 

implement, easy to analyze and can take advantages of all 

member classifiers (Woz´niak et al., 2014). 

 

Segrera and Moreno (2005) categorized the methods for 

building MCSs into two groups: ensemble, and hybrid. 

Ensemble MCSs combine classifiers with the same 
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learning models while modifying the input training data 

set for each classifier. Ensemble-based combination 

typically has lower generalization errors than any of its 

individual models (Ahn et al., 2007). Bagging and 

boosting techniqueshave been considered in most of the 

previous studies as a typical example of ensemble-based 

approaches. Both bagging and boosting introduce 

diversity by considering different training samples and 

only one base classifier. Dietterich (2000) concluded that 

with low noise data, boosting outperforms bagging 

technique. On the other hand, bagging outperforms 

boosting in the case of high noise data (Khoshgoftaar et 

al., 2011). The main problem with Bagging and boosting 

is the large number of classifiers in the final MCS. As 

well, measuring diversity is still an open research area 

(Cavalcanti et al., 2016). Hybrid MCSs, on the other 

hand, combine classifiers with different learning 

algorithms. In this regard, many combination rules have 

been considered in the literature: the intersection of 

decision regions (Haralick, 1976); voting methods 

(Mazurov et al., 1987); prediction by top choice 

combinations (Wemecke, 1992); Dempster–Shafer theory 

(Xu et al., 1992); and ranking methods (Ho et al., 1994).  

 

Dai and Liu (2010) proposed a MCS to combine the 

results from six base classifiers: maximum likelihood 

(ML); SVM; ANN; spectral angle mapper (SAM); 

minimum distance (MD); and CT. A voting strategy was 

applied for the combination. The results confirmed that 

the MCS performed much better than any base classifier. 

Ghimireet al. (2012) have compared three combination 

techniques based on decision trees (DT): bagging; 

AdaBoost; and random forest (RF). For the three cases, 

the MCS has outperformed the DT-base classifier. Kumar 

and Meher (2013) proposed an effective MCS based on 

multiple rules of granular neural networks (GNN) with 

improved performance classification accuracy. Khosravi 

and Beigi (2014) applied bagging and boosting to 

construct a MCS based on SVM to classify a 

hyperspectral dataset. The results showed a perfect 

performance of the MCS for classifying high dimensional 

data. Chen et al. (2017) constructed a MCS to combine 

SVM, DT and ANN using the AdaBoost technique. The 

results showed that the MCS has effectively improved the 

classification accuracy as compared with individual 

classifiers.  

 

In order to select the most suitable combiner for a given 

problem, some guidelines have been given in the 

literature: majority voting (Kimura and Shridhar, 1991) 

for combining class labels; averaging techniques 

(Hashem and Schmeiser, 1995) for combining posterior 

probabilities; fuzzy logic (Zadeh, 1965), Dempster-Shafer 

theory of evidence (DS) (Rogova, 1994) or ANN (El-

Melegy and Ahmed, 2007) for combining fuzzy 

membership values. Detailed reviews of MCSs are given 

by Woz´niak et al. (2014). The most recent techniques are 

usually presented in the International Workshop on MCSs 

and in Machine Learning and Pattern Recognition 

Journals. 

 

It is worth mentioning that the fuzzy set theory is more 

suitable for pattern recognition in the case of remotely 

sensed data where classes are normally ill-defined and 

overlapped (Kuncheva, 2000). On the other hand, it is not 

depending on the input data which is the main drawback 

of most of the existing MCSs. Many attempts have been 

made for RS image analysis and classification using 

fuzzy sets (Chen, 2000; Tso and Mather, 2001; Ghosh et 

al., 2008). Salah et al. (2010) applied the standard FMV 

to combine non-weighted ANN, CT and SVM classifiers 

using aerial images and LiDAR data. The results 

demonstrate that the standard FMV has improved the 

classification accuracy as compared with the best single 

classifier. FMV is the most commonly used fuzzy sets 

technique since it is easy to apply and able to manage 

imperfect data (Ponti-Jr., 2011).  

 

To the best of the author knowledge, the effect of 

weighting classifiers and training sample size on the 

accuracy and robustness of FMV-based fusion have not 

been considered in the literature. The objective of this 

paper is to define clear guidelines to explain under which 

conditions the FMV are able to improve the performance 

of individual classifiers. To meet the objective, ANN, 

SVM and CT have been adopted as base classifiers. The 

three classifiers have different modelling and learning 

criteria which lead to different errors and then 

complementary information. In this regard, the parallel 

combination technique has been applied. The three-

member classifiers have been applied to classify the test 

area using IDRISI Taiga software (Clark labs, 2012). The 

proposed fusion method in this research has been 

implemented through a set of codes generated by the 

author in Matlab environment. For the rest of the paper, 

the term WFMV will be used to refer to the FMV-based 

fusion of the weighted classifiers, while the term SFMV 

will be used to refer to the FMV-based fusion of the 

standard or non-weighted classifiers.  

 

2. Study area and data sources 

 
2.1 Pan-sharpened satellite image  

An IKONOS image covers the test area was collected on 

April 17, 2010, and supplied in a digital TIFF format. The 

IKONOS image has been created using a pan-sharpening 

process that combines the 0.82m panchromatic band with 

the 3.2m multispectral bands to create 0.82m colour 

image. Table 1 summarizes IKONOS satellite 

pacifications. The test area is a dense urban area with 

medium size residential buildings, a large network of 

main and minor roads, as well as open vegetation areas as 

shown in figure 1. 
 

Table 1: IKONOS satellite specifications 

Imaging Mode Panchromatic Multispectral 

Pixel Size 0.82 meter  3.2 meter  

Spectral 

Range 
450-900 nm 

450-520 nm (blue) 

520-600 nm 

(green) 

625-695 nm (red) 

760-900 nm (NIR) 

Dynamic 

Range 
11 bit/pixel 11 bit/pixel 
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Figure 1: The one-meter pan-sharpened IKONOS 

image covers the study area 

 

2.2 Reference data 

In order to evaluate the performance of the proposed 

combination method, B, R and G were digitized in the 

image and applied as reference data as shown in figure 2, 

Class “G" mainly corresponds to grass and trees. All 

recognizable objects were digitized independently of their 

size. Joined buildings that were obviously separated were 

digitized as separate buildings; otherwise, they were 

digitized as one building. 

 

 
Figure 2: Reference data used for evaluating the 

performance of the proposed method. Red: B, green: 

G, black: R 

 

2.3 Feature attributes  

In order to describe classes effectively, a wide variety of 

spectral attributes have been generated and only the most 

useful ones, as shown in figure 3, have been statistically 

selected based on Yang (2007). The selected attributes 

and the original multispectral image have been used 

simultaneously as input data for the classification 

process. The objective is to solve for two common 

problems associated with HR digital imagery which are: 

1) shadows caused by buildings and trees; 2) and spectral 

variability within the same land use/cover class (Lu and 

Weng, 2007). On the other hand, it provides useful 

information for improved land use/cover classification 

(Hirose et al., 2004). For more details about the formulas 

used for calculating attributes, one can refer to Russ 

(2002). 

 

 
Figure 3: The set of attributes that have been applied 

as the input for individual classifiers 

 

2.4 Training Datasets 

Training datasets assemble a set of statistics to describe 

the spectral pattern for each land use/cover class in the 

image. A minimum of (n+1) pixels is required for a 

signature with n is the number of bands (Lillesand and 

Kiefer, 2004). The training data used are sets of manually 

digitized samples from the image for each land use/cover 

class. Polygons of approximately the same areas were 

digitized for B, R and G classes. As recommended by 

Kuncheva (2004), the same training samples have been 

applied to train all the member classifiers. Digital 

numbers (DNs) in a range between 0 and 255, 

corresponding to reflectance values, have been applied to 

generate the training samples. The selected signatures are 

compared in a graph representing DNs for each signature 

from the red band as shown in figure 4. The clear 

separation for most DNs values indicates that the selected 

signatures represent a completely distinct set of pixels, 

which is essential for good classification results. 

 
Figure 4: Minimum and maximum DNs for 

signatures, from the red band: black for R; green for 

G; and red for B 
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3. Methodology 

 

The proposed FMV-based fusion of ANN, SVM and CT 

classifiers has been implemented in several steps as 

shown in figure 5. The proposed MCS has four phases. 

First, training data are fed into the three-member 

classifiers to obtain individual decisions. After that, the 

obtained probabilities were weighted according to the 

relative importance of each classifier. The 10-fold cross-

validation technique was then applied to tune the shape 

and position of the fuzzy membership function. At the 

end, FMV is applied to combine the weighted 

probabilities from the three-member classifiers and form 

the final decision. 

 

 
Figure 5: The proposed FMV-based fusion workflow 

 

3.1 Base Classifiers 

In order to improve the performance of the MCS, 

individual classifiers should have different mathematical 

concepts and offer complementary information. As well, 

in the case of two base classifiers, a limited improvement 

in classification accuracy can be obtained by the MCS 

(Chen et al., 2017). In this regard, three different 

algorithms have been applied as member classifiers. 

These classifiers represent different learning criteria and 

include SVM as a machine learning classifier; ANN as an 

artificial neural networks classifier; and CT as a statistical 

classifier. The output of each classifier is a degree of 

membership of every pixel for each class.  

 

3.1.1 ANN 

ANN is a self-learning algorithm that can compensate for 

uncertainty in information and can perfectly handle the 

problem of high spectrum confusion in remotely sensed 

data. This can be done by setting the number of nodes in 

the hidden layers (Coppin et al., 2010). The ANN is 

trained based on randomly chosen initial weights (Hu, 

2000). The most common and widely used feed-forward 

back propagation neural algorithm, multi-layer 

perceptron (MLP), has been applied. The network 

consists of three layers: input; hidden; and output. The 

number of input nodes of the MLP is the number of the 

input features; the number of output nodes is the number 

of classes; and the number of hidden nodes is between 2N 

to 3N where N is the number of classes (Ghosh and Uma 

Shankar, 2010). In this regard, the MLP was a seven 

hidden layers MLP with nine input neurons, one for each 

input variable, and three output neurons, one for each 

class. Except for the input nodes, a weight is calculated 

for each node as the sum of the output at the nodes to 

which it is connected in the preceding layer. In order to 

derive the final output and fed it to the nodes in the next 

layer, the weighted sum is passed through a transfer 

function as follow: 

 

𝑛𝑒𝑡𝑣 = ∑ 𝑊𝑢𝑣𝑢 𝑂𝑢 + 𝑏𝑖𝑎𝑠𝑣𝑎𝑛𝑑𝑂𝑣 = 𝑆(𝑛𝑒𝑡𝑣)  (1) 

 

Where: 

wuv: the weight for the connection between nodes u and v 

biasv: the bias for node v 

Ou: the output at node u 

S: the sigmoid activation function. This function can 

perfectly handle nonlinear problems (Cybenko, 1989). 

 

For weights updating, MLP uses a back-propagation 

learning algorithm to reduce the sum of square error 

between the obtained and desired output in a descending 

manner as follows (Haykin, 1998): 

 

∆𝑊𝑢𝑣(𝑛 + 1) = 𝛼∆𝑊𝑢𝑣(𝑛) + 𝜂𝛿𝑣𝑂𝑢       (2) 

 

Where n, α, η and δ are the iteration number, momentum 

parameter, learning rate and node error respectively. In 

this regard, each input pattern is assigned to the class that 

corresponds to the highest node value obtained at the 

output of the MLP. In order to improve the performance 

of the MLP with reasonable processing time, a set of 

parameter values suggested by Kavzoglu and Mather 

(2003) have been applied as shown in table 2. 

 

Table 2:  The basic architecture to start the MLP 

classifier 

Parameter Value 

n 10,000 

α 0.5 

η 0.05 

δ 0.0001 

 

3.1.2 CT 

CT was introduced by Breiman et al. (1984). It is a non-

parametric technique that uses an iterative procedure 

known as binary recursive partitioning. In this regard, a 

heterogeneous sample of training data with multiple 

classes is hierarchically and progressively subdivided into 

more homogeneous classes based on a binary splitting 

rule to form the tree. The tree is then used to classify the 

whole datasets. Classification trees have proved to be 

strong, simple to implement, ideal for noise 

minimization, highly automatic and perfect for complex 
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data such as multi-source and/or multi-scale data. In the 

classification process, only the most useful attributes are 

selected and used (Chen et al., 2017).  

 

Three models can be used with CT as splitting criteria 

which include: Entropy, Gain Ratio, and Gini. The 

Entropy algorithm (after Shannon, 1949) has proved to be 

preferable for classification problems from HR digital 

imagery (Salah et al., 2011) and has been applied as the 

splitting criterion in this study. The method decreases the 

entropy until a terminal node that has zero entropy 

(contains pixels from one class) is reached. In order to 

identify class xi of a training dataset in node N, the 

entropy can be described as in equation 3 where P(xi) is 

the probability of class xi. 
 

)(2log

1

)()( ixP
l

i
ixPNEntropy 



     (3) 

 

A 10-fold cross-validation process has been applied for 

pruning the trees. This technique has proved to be highly 

accurate and requires no independent dataset for 

assessing the performance of the model.  

 

3.1.3 SVM 

Recently, SVM has become a common tool to classify 

linear and nonlinear problems. It is based on statistical 

learning theory and has excellent learning performance 

especially when applied to remotely sensed data. First, 

the input feature space is transformed into a high 

dimensional one, and then an optimal hyperplane is fitted 

into data to separate 0 and 1 classes by maximizing the 

margin between them. The closest data points to the 

hyperplane are referred to as support vectors (Vapnik, 

1995). 

 

Since the One-Against-One (1A1) technique normally 

results in a huge number of binary SVM as well as 

intensive computations, the One-Against-All (1AA) 

technique has been applied to solve for the 0/1 

classification problem. The radial basis function 

(RBF)kernel can nonlinearly map more complex data into 

a higher dimensional space with reasonable processing 

times and has proved to be effective for remote sensing 

applications. In this regard, it has been applied for fitting 

the hyperplane into data (Van der Linden et al., 2009). 

The general mathematical representation of the RBF 

kernel is shown in equation 4. The gamma term, γ, is a 

user-controlled parameter and its correct definition can 

significantly improve the performance of the SVM 

classification.  

K (xi, xj) = exp (-γ||xi - xj||2), γ > 0                (4) 

 

The 10-fold cross-validation technique has been applied 

to determine the optimal γ value, 0.03. This technique has 

proved to be effective to prevent over-fitting problems 

and usually results in better performance (Hsu et al., 

2009). The sequential minimal optimization (SMO) 

algorithm has been applied for training the SVM through 

breaking the large size optimization problems into a 

series of smallest ones. This can speed up the 

computations and minimize memory requirements (Platt, 

1999). 

3.2 WFMV-Based fusion 

FMV has proved to be a powerful technique to handle the 

uncertainties and imprecision in remotely sensed data by 

defining a fuzzy membership function. A membership 

function is a relation that shows how a certain point in the 

input space will be mapped as a membership value in the 

output space. Before incorporating the probabilities, ppi, 

from ANN, SVM, and CT into the FMV, the probabilities 

are weighted by the accuracies estimated for the 

corresponding classifiers as an importance weight. This 

weighting process minimizes errors for the FMV in the 

case of independent outputs. Let the classification 

accuracies obtained from the accuracy assessment 

process are: αc1; αc2; and αc3 for ANN, SVM, and CT 

respectively. The weighted probabilities, ppi`, for a 

classifier cimay be given as follows: 
 

𝑤𝑖 = log (
𝛼𝑐𝑖

1−𝛼𝑐𝑖
)                             (5) 

 

𝑝𝑝𝑖
` = 𝑤𝑖 ∗ 𝑝𝑝𝑖                         (6) 

 

The idea behind the FMV is to give some semantics, 

meanings, to the weights. Based on this semantics, the 

weights can be determined directly (Zadeh, 1983). First, 

the membership function of relative quantifiers are 

defined as in equation 7 (Herrera and Verdegay, 1996), 

With parameters a, b[0, 1] and ppi`is the weighted 

class membership of pixel i.   
 

bippif

bippaif

aippif

ab

aipp

iPQ




















`

`

`

1

`
0

     (7) 

 

The value 1 of 
iPQ indicates that the quantifier is 

completely satisfied. On the other hand, the quantifier is 

not fulfilled at all if 
iPQ = 0 and any intermediate value 

iPQ indicates an intermediate fulfilment degree. The 

optimal selection of fuzzy parameters (a, b) has a direct 

impact on the FMV performance since they control the 

shape and position of the membership function. 

Unfortunately, there is no precise mathematical method 

to define these parameters (Saheb et al., 2013). A grid-

search on a and b using a 10-fold cross-validation was 

used for this purpose. Basically, pairs of (a, b) were 

tested and the one with the best cross-validation accuracy 

was selected. In this regard, a grid with an interval of 0.1 

for both a and b has been applied. Then, the weights 

based on the linguistic quantifier can be determined as in 

equation 8, with i is the order of a given classifier after 

ranking
iPQ in a descending order and N is the total 

number of classifiers (Yager 1998): 
 

Nifor
N

i

iPQ
N

i

iPQ
iPw ,.....,1,

1



 
















   (8)

 

The final combined probability can be determined as in 

equation 9, with k is the number of classes.  

28



Journal of Geomatics  Vol. 13, No. 1, April 2019 

 
















N

i
ipp

ipw

k
WFMV

P

1

`maxarg (9) 

 

3.3 Accuracy assessment 

In order to evaluate the performance of the proposed 

method, the results have been compared with the 

reference data. The overall classification accuracy OA has 

been determined as in equation 10 with NCP is the total 

number of correctly classified pixels and NRP is the total 

number of reference pixels. Since the overall 

classification accuracy is just a global measure for the 

performance of the combination process, the users and 

producers accuracies (UA and PA) have been used. 

Unlike overall classification accuracy, UA and PA clearly 

indicate how the proposed methods improve or 

deteriorate the results for individual classes as shown in 

equations 11 and 12. CP is the correct class predictions, 

TP is the total predictions and TCP is the total class 

pixels. 

NRP

NCP
OA  (10) 

 

𝑈𝐴 =
𝐶𝑃

𝑇𝑃
                            (11) 

 

𝑃𝐴 =
𝐶𝑃

𝑇𝐶𝑃
                  (12) 

 

4. Results and discussion 

 

Initially, classification of the satellite image has been 

performed and the parameters for each classifier have 

been estimated using the labeled training samples. Once 

the optimum parameters were selected, each classifier has 

been applied to classify the whole image. The obtained 

results are nine probability images, three for each 

classifier, representing the membership of each pixel to 

each class. The probabilities were then modified by 

assigning weights derived from the classification 

accuracy of the corresponding classifier. The membership 

values are true probabilities in the range of 0 to 1 as 

shown in figure 6.  
 

 
Figure 6: A typical example showing the weighted 

membership images of individual classifiers 

 

Before applying the WFMV algorithm to combine these 

probabilities, a grid-search on a and b using a 10-fold 

cross-validation and grid interval of 0.1 for both a and b 

has been applied. As a result, a relative quantifier with 

parameters (0.1, 0.5) has performed the best for the 

membership function QPiin equation 7 as graphically 

depicted in figure 7. Once a and b have been determined, 

they were applied with the nine weighted probability 

images to perform the WFMV-based combination. Figure 

8 is a typical example of the WFMV output which is 

three probability images representing the membership 

values of every pixel for each class. 
 

 
Figure 7: The grid search results using the input data 

 

 
Figure 8: A typical example showing the membership 

images of the WFMV system 

 

For each pixel, the membership values for all classes 

were compared and the class with the highest value was 

assigned to that pixel to create a WFMV-based 

classification image. Figure 9 is a typical example 

illustrates the original image, the classification results 

obtained for individual classifiers, SFMV and WFMV. 

By focusing on the buildings inside the white squares, 

one can find that the WFMV has detected complete 

buildings much better than SVM and CT, and as good as 

ANN and SFMV. On the other hand, the white circled 

regions indicate that WFMV has detected separate 

buildings more accurate than any individual classifier, as 

well as SFMV. However, many vegetation was classified 

as roads by the three-member classifiers and hence by 

SFMV and WFMV as graphically depicted in the white 

rectangles. An expected reason for that can be the high 

degree of similarity between the spectral reflectance of 

roads and vegetation in the used pan-sharpened IKONOS 

image. One possible solution is to use a Normalized 

Difference Vegetation Index (NDVI) which may increase 

the classification accuracy due to its ability to detect 

vegetation accurately.  
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Figure 9: Results of individual classifiers, SFMV and 

WFMV 

 

4.1 Overall accuracy 

In order to evaluate the performance of the WFMV, it has 

been compared with single classifiers and with SFMV. 

Table 3 summarizes the obtained accuracies for the three 

classifiers and their combinations by SFMV and WFMV. 

The WFMV has statistically performed better than any 

individual classifier as well as SFMV. For individual 

classifiers, ANN performed the best with 91.72% overall 

accuracy, followed by SVM with 89.60% overall 

accuracy and CT with an overall accuracy of 87.09%. 

The WFMV resulted in overall classification accuracy of 

about 95.60%, which is 3.88, 6, 8.51 and 1.24% better 

than ANN, SVM, CT and WFMV respectively. 
 

Table 3: Overall accuracy of different classification 

methods 

classifier ANN SVM CT SFMV WFMV 

Overall 

Accuracy 

91.72 89.60 87.09 94.36 95.60 

 

4.2 Class accuracy 

In terms of class accuracy, the three-member classifiers 

resulted in different class accuracies for the same test area 

as shown in table 4. No single classifier has performed 

the best for all classes. A typical example is that CT 

resulted in lower UA for vegetation, 58.75%. On the 

other hand, it outperformed the ANN and SVM in 

classifying buildings with UA of about 99.99%. These 

results confirm that classifiers with different algorithms 

are complementary and result in different classification 

accuracies for different classes.  

Assessments of class accuracies confirmed that the 

WFMV-based fusion performed the best in most cases as 

shown in table 4. Most of the class-accuracies are 

improved by the WFMV. Whereas the application of 

ANN, SVM, CT and SFMV resulted in average class 

accuracies (average of UA and PA) of 90.68, 88.91,86.73 

and 91.91% respectively, the application of WFMV 

fusion displayed a significant improvement and resulted 

in average class accuracy of 95.38%. Another advantage 

of WFMV-based fusion is that the obtained errors are less 

variable. Whereas the application of ANN, SVM, CT and 

SFMV resulted in standard deviations (SD) of 10.59, 

10.75, 14.89 and 9.79 respectively; the WFMV-based 

fusion resulted in SD of 4.02. Thus it conforms to the 

requirement of Anderson et al. (1976) that the class 

accuracies of different classes should be about equal. 

 

4.3 Sensitivity to training sample size 

In order to obtain a robust decision about the performance 

of the WFMV system, five different training samples 

(100, 200, 300, 400 and 500 pixels) evenly distributed 

through the test area were selected and tested. As can be 

observed from figure 10, WFMV always improves the 

performance of individual classifiers and outperforms the 

SFMV even in the cases of small size training samples. 

This behaviour can be clearly observed in the cases of 

training samples of size less than 300 pixels. On the other 

hand, WFMV is the most stable classifier followed by 

SFMV, ANN, SVM and CT respectively. Decreasing the 

sample size from 500 to 100 pixels has decreased the 

obtained classification accuracies by 12.83, 14.38, 22.7, 

30.23 and 35.42% for WFMV, SFMV, ANN, SVM and 

CT respectively.  

 

 
Figure 10: Performance evaluation of individual 

classifiers along with their combination using SFMV 

and WFMV on different data samples 

 

 

  

Table 4: Classification accuracies obtained for different classifiers 

classifiers 
B R G 

Average SD 
UA PA UA PA UA PA 

ANN 99.13 91.09 98.02 91.12 70.19 94.52 90.68 10.59 

SVM 91.34 70.53 81.94 99.03 94.55 96.06 88.91 10.75 

CT 99.99 85.28 96.15 85.85 58.75 94.38 86.73 14.89 

SFMV 99.23 94.02 98.79 89.33 73.37 96.72 91.91 9.79 

WFMV 98.15 95.38 87.99 96.75 99.41 94.62 95.38 4.02 
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4.4 Computational complexities 

Another problem to be investigated is the computational 

cost associated with each model. In this regard, it is worth 

mentioning that the computer system used is of: Genuine 

Intel (R) CPU T2130, 1.86GHz and 783MHz, and 896 

MB of RAM along with a test area of approximately one 

Km2. In order to evaluate the performance of the 

proposed model, it has been compared with the three-

member classifiers and SFMV. Table 5 shows the elapsed 

time in seconds during the combination process. In terms 

of individual classifiers, CT is the cheapest classifier with 

almost 12 second/km2 processing time, followed by SVM 

and ANN with almost 15 and 17 second/km2 respectively. 

The time required by the SFMV technique is almost 24 

seconds/km2 which is almost two times more than that 

required by the cheapest classifier. WFMV, on the other 

hand, is the most complex classifier with 27 second/km2. 

However, it is still comparable with SFMV. 

 

Table 5: Computational complexity comparison of 

WFMV-based fusion with individual classifiers and 

SFMV 

classifier CPU time (second/km2) 

ANN 17.082077 

SVM 15.333318  

CT 12.165660 

SFMV 24.294089  

WFMV 27.922584 

 

5. Conclusions 

 
In this paper, a MCS using ANN, SVM and CT has been 

proposed to produce land use/cover maps from 0.82m 

pan-sharpened IKONOS satellite imagery. ANN was the 

most accurate individual classifier (91.72%), followed by 

SVM (89.60%) and CT (87.09%). A modified weighted 

majority voting scheme, WFMV, has been applied for 

combining the results obtained for individual classifiers. 

The architecture of the WFMV has been obtained through 

two steps: 1) weighting the decisions of the member 

classifiers; and 2) setting the parameters of the WFMV 

model using a 10-fold cross-validation. The proposed 

model has been tested and evaluated considering four 

different aspects: 1) overall accuracy; 2) class accuracy; 

3) sensitivity to training sample size; and 4) 

computational complexity. The results showed an 

improvement of about 3.88% in the classification 

accuracy over the best individual classifier. The 

application of WFMV resulted in an average class 

accuracy of 95.38% which is 4.7 and 3.5% better than the 

best individual classifier and SFMV respectively. 

Another advantage of WFMV fusion is that the obtained 

errors are less variable and class accuracies of the 

different classes are almost equal. In terms of 

computational complexities, WFMV is still comparable 

with SFMV. Although ANN can perform as well as 

WFMV when large training samples are available, 

WFMV performs much better than ANN in the case of 

small training samples. The proposed WFMV approach 

can be practically extended to integrate any number of 

member classifiers. As future work, Deep Learning Based 

(DLA) approach should be incorporated into the 

classification process to further improve the accuracy of 

the obtained results. 

 

Acknowledgements 

The author would like to acknowledge Giza Utility Data 

Centre, Giza Governorate, Egypt for the provision of the 

0.82mpan-sharpened IKONOS image. 

 

References 

 
Ahn, H., M.J. Fazzari, N. Lim, J.J. Chen and R.L.Kodell 

(2007). Classification by ensembles from random 

partitions of high dimensional data. Computational 

Statistics and Data Analysis 51(12), 6166–6179. 

Anderson, J.R., E.E. Hardy, J. T. Roach and R. E. Witmer 

(1976). A land use and land cover classification system 

for use with remote sensor data. Geological Survey 

Professional Paper No. 964, U.S. Government Printing 

Office, Washington DC, 28. 

Breiman, L., J. Friedman, R. Olshenand and C. J. Stone 

(eds) (1984). Classification and regression trees. 

Chapman & Hall, New York, 358 p. 

Cavalcanti, G., L. Oliveira, T. Moura and G. Carvalho 

(2016). Combining diversity measures for ensemble 

pruning. Pattern Recognition Letters, 74(2016), 38–45.  

Chen, C.F. (2000) Fuzzy training data for fuzzy 

supervised classification of remotely sensed images, In: 

Proceedings of the 20th Asian Conference on Remote 

Sensing (ACRS 1999), 22-25 November 1999, Hong 

Kong Convention and Exhibition Centre, Venue, Hong 

Kong, China, pp. 460–465. 

Chen, Y., P. Peng Dou and X. Xiaojun Yang (2017). 

Improving Land Use/Cover classification with a multiple 

classifier system using Ada Boost integration technique. 

Remote Sensing, 9(10), 1055; doi: 10.3390/rs9101055. 

Clark labs (2012). Guide to IDRISI software [online]. 

Clark University. Available from: 

http://www.clarklabs.org/applications/upload/land 

change-modeler-IDRISI-focuspaper. pdf [Accessed 23 

October 2018]. 

Coppin, P., I. Jonckheere, K. Nackaerts, B. Muys and E. 

Lambin (2010). Digital change detection methods in 

ecosystem monitoring: A review, International Journal of 

Remote Sensing 2010(25), 1565–1596.  

Cybenko, G. (1989).  Approximation by superpositions of 

a sigmoidal function. Mathematics of Control, Signals, 

and Systems, 2(4), 303–314. 

Dai, L. and C. Liu (2010). Multiple classifier 

combination for land cover classification of remote 

sensing image. In: Proceedings of the 2010 2nd 

International Conference on Information Science and 

Engineering (ICISE), 4–6 December 2010 Hangzhou, 

China, pp. 3835–3839. 

Dietterich, T. (2000). An experimental comparison of 

three methods for constructing ensembles of decision 

trees: bagging, boosting, and randomization, Machine 

Learning, 40, 139–157. 

31

http://for/
http://www.clarklabs.org/applications/upload/land-change-modeler-IDRISI-focuspaper
http://www.clarklabs.org/applications/upload/land-change-modeler-IDRISI-focuspaper
https://en.wikipedia.org/wiki/Mathematics_of_Control,_Signals,_and_Systems
https://en.wikipedia.org/wiki/Mathematics_of_Control,_Signals,_and_Systems


Journal of Geomatics  Vol. 13, No. 1, April 2019 

 

Du, P., S. Liu, J. Xia and Y. Zhao (2013). Information 

fusion techniques for change detection from multi-

temporal remote sensing images, Information Fusion, 

14(1), 19–27. 

El-Melegy, M.T. and S.M. Ahmed (2007). Neural 

networks in multiple classifier systems for remote-

sensing image classification. In: Nachtegael, M., Vin der 

Weken, D., Kerre, E.E. and Philips, W., ed. Soft 

Computing in Image Processing: Recent Advances, 

Volume 210 of Studies in Fuzziness and Soft Computing, 

pp. 65–96, Springer, Germany. 

Fumera G., I. Pillai and F. Roli (2004). A two-stage 

classifier with reject option for text categorisation. In: 

Fred A., Caelli T.M., Duin R.P.W., Campilho A.C., de 

Ridder D., ed. Structural, Syntactic, and Statistical 

Pattern Recognition (SSPR/SPR 2004). Lecture Notes 

in Computer Science, 3138. Springer, Berlin, 

Heidelberg, pp. 771–779. 

Ghimire, B., J. Rogan, V.F. Rodriguez-Galiano, P. 

Panday and N. Neeti (2012). An evaluation of bagging, 

boosting, and random forests for land-cover classification 

in Cape Cod, Massachusetts, USA. GIScience and 

Remote Sensing, 49(5), 623-643.  

Ghosh, A. and B. Uma Shankar (2010). Neuro-fuzzy-

combiner: an effective multiple classifier System. 

International Journal of Knowledge Engineering and Soft 

Data Paradigms, 2(2), pp. 107- 129. 

Ghosh, A., S. K. Meher and B.U. Shankar (2008). A 

novel fuzzy classifier based on product aggregation 

operator, Pattern Recognition, 41(3), 961–971. 

Han, M., X. Zhu and W. Yao (2012). Remote sensing 

image classification based on neural network ensemble 

algorithm, Neurocomputing, 78(1), 133–138. 

Haralick, R.M. (1976). The table look-up rule, 

Communications in Statistics-Theory and Methods A5, 

pp. 1163–1191. 

Hashem, S. and B. Schmeiser (1995). Improving model 

accuracy using optimal linear combinations of trained 

neural networks, IEEE Transactions on Neural Networks, 

6(3), 792–794. 

Haykin, S. (1998). Neural Networks: A Comprehensive 

Foundation, 2nd ed., Prentice Hall. 

Herrera, F. and J. L. Verdegay (1996). A Linguistic 

decision process in group decision making. Group 

Decision Negotiation, 5, pp. 165-176. 

Hirose, Y., M. Mori, Y. Akamatsu and Y. Li (2004). 

Vegetation cover mapping using hybrid analysis of 

IKONOS data.  ISPRS Archives, XXXV (B7), 12-23 July 

2004 Istanbul, Turkey. 

Ho, T.K., J.J. Hull and S.N. Srihari (1994). Decision 

combination in multiple classifier systems. IEEE 

Transactions on Pattern Analysis and Machine 

Intelligence, 16(1), 66–75. 

Hsu, C.W., C.C. Chang and C.J. Lin (2009). A practical 

guide to support vector classification [online]. 

Department of Computer Science, National Taiwan 

University, Available from: 

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf 

[Accessed 23 October 2018]. 

Hu, Y. (2000). Handbook of neural network signal 

processing, 1st ed., CRC Press, Inc., Boca Raton, FL, 

USA, 2000. 

Kavzoglu, T. and P.M. Mather (2003). The use of back 

propagating artificial neural networks in land cover 

classification. International Journal of Remote Sensing, 

24(3), 4907- 4938. 

Khoshgoftaar, T., J. Van Hulse and A. Napolitano (2011). 

Comparing boosting and bagging techniques with noisy 

and imbalanced data. IEEE Transactions on Systems, 

Man and Cybernetics, Part A: Systems and Humans (41), 

552–568. 

Khosravi, I. and M. Mohammad-Beigi (2014). Multiple 

classifier systems for hyperspectral remote sensing data 

classification. Journal of the Indian Society of Remote 

Sensing, 42(2), 423–428.  

Kimura, F. and M. Shridhar (1991). Handwritten 

numerical recognition based on multiple algorithms, 

Pattern Recognition, 24(10), 969–983. 

Kumar, D.A. and S.K. Meher (2013). Multiple classifiers 

systems with granular neural networks. In: Proceedings 

of the 2013 IEEE International Conference on Signal 

Processing, Computing and Control (ISPCC), 26–28 

September 2013 Solan, India, pp. 1–5. 

Kuncheva, L.I. (2000). Fuzzy Classifier Design, 

Springer-Verlag. 

Kuncheva, L.I. (2004). Combining Pattern Classifiers: 

Methods and Algorithms, Wiley-Interscience. 

Lillesand, T. and R. Kiefer (2004). Remote sensing and 

image interpretation. Fourth Edition, John Willey & 

Sons, Inc., New York. 

Lu, D. and Q. Weng (2007). A survey of image 

classification methods and techniques for improving 

classification performance. International Journal of 

Remote Sensing, 28(5), 823 - 870. 

Lv, Y., P.F. Shi and Y.M. Zhao (2000). Voting principle 

for combination of multiple classifiers. Journal of 

Shanghai Jiao Tong University, 34(5), 680-684. 

Maulik, U. and D. Chakraborty (2010). A robust multiple 

classifier system for pixel classification of remote sensing 

images, Fundamental Informaticae, 101, 286–304. 

Mazurov, V.D., A.I. Krivonogov and V.S. Kazantsev 

(1987). Solving of optimization and identification 

problems by the committee methods. Pattern 

Recognition, 20, 371–378. 

Moustakidis, S., G. Mallinis, N. Koutsias and J.B. 

Theocharis (2012). SVM-based fuzzy decision trees for 

classification of high spatial resolution remote sensing 

images. IEEE Transaction on Geoscience and Remote 

Sensing, 50, 149–169.  

Platt, J. (1999). Fast training of support vector machines 

using sequential minimal optimization. In: B. Schölkopf, 

32

https://www.researchgate.net/journal/1548-1603_GIScience_Remote_Sensing
https://www.researchgate.net/journal/1548-1603_GIScience_Remote_Sensing
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://link.springer.com/journal/12524
https://link.springer.com/journal/12524


Journal of Geomatics  Vol. 13, No. 1, April 2019 

 

C. J. C. Burges, and A. J. Smola, ed. Advances in Kernel 

Methods - Support Vector Learning, Cambridge, MA.: 

MIT Press, pp. 185-208. 

Ponti-Jr, M. (2011). Combining Classifiers: from the 

creation of ensembles to the decision fusion. In: 

Proceedings of the 2011 24th SIBGRAPI Conference on 

Graphics, Patterns, and Images Tutorials, 28-30 August 

2011, Alagoas, Brazil, pp. 1-10. 

Ponti-Jr. M. and J. P. Papa (2011). Improving accuracy 

and speed of optimum-path forest classifier using 

combination of disjoint training subsets. In: Proceedings 

of the 10th International Workshop on Multiple Classifier 

Systems (MCS 2011) LNCS 6713, 15-17 June 2011, 

Naples, Italy, pp. 237–248.   

Ranawana, R. and V. Palade (2006). Multi-classifier 

systems: review and a roadmap for developers. 

International journal of hybrid intelligent systems, 3(1), 

35-61· 

Rogova, G. (1994). Combining the results of several 

neural network classifiers. Neural Networks, 7(5), 777–

781. 

Russ, J.C. (2002). The image processing handbook, 

fourth edition. Boca Raton, FL: CRC Press. 

Saheb, B., k. Subba rao and S. Phani kumar (2013). A 

survey on voting algorithms used in safety critical 

systems. International Journal of Engineering and 

Computer Science ISSN: 2319-7242, 2(7), 2272-2275. 

Salah, M., J. Trinder and A. Shaker (2011). Performance 

evaluation of classification trees for building detection 

from aerial images and Lidar data: A Comparison of 

Classification Trees Models. International Journal of 

Remote Sensing, 32(20), 5757-5783. 

Salah, M., J. Trinder, A. Shaker, M. Hamed and A. 

Elsagheer (2010). Integrating multiple classifiers with 

fuzzy majority voting for improved land cover 

classification. In: Paparoditis N., Pierrot-Deseilligny M., 

Mallet C., Tournaire O., ed. IAPRS, XXXVIII (3A), 1-3 

September 2010, Saint-Mandé, France, pp. 7-12.  

Segrera, S. and M. Moreno (2005). Multi classifiers: 

applications, methods and architectures. In: Proceedings 

of the International Workshop on Practical Applications 

of Agents and Multiagents Systems, IWPAAMS05, pp. 

263–271. 

Shannon, C. E. (editor) (1949). Reprinted 1998, The 

mathematical theory of communication, (Urbana, IL: 

University of Illinois Press), 324. 

Tso, B. and P.M. Mather (2001). Classification methods 

for remotely sensed data, Taylor and Francis, London. 

Tumer, K. and J. Ghosh (1996). Error correlation and 

error reduction in ensemble classifiers, Connection 

Science, 8(3), 385–204. 

Van der Linden, S., A. Rabe, A. Okujeni and P. Hostert 

(2009). Image SVM classification, application manual: 

imageSVM version 2.0.  

Vapnik, V. N. (1995). The nature of statistical learning 

theory. Springer-Verlag, New York. 

Wemecke, K.D. (1992). A coupling procedure for the 

discrimination of mixed data, Biometrics, 48, 497–506. 

Woz´niak, M., M. Graña and E. Corchado (2014). A 

survey of multiple classifier systems as hybrid systems. 

Information Fusion, 16 (2014), 3–17. 

Xu, L., A. Krzyzak and C.Y. Suen (1992). Methods of 

combining multiple classifiers and their applications to 

handwriting recognition, IEEE Transactions on Systems, 

Man, and Cybernetics, 22, 418–435. 

Yager, R.R. (1998). On ordered weighted averaging 

aggregation operators in multicriteria decision making, 

IEEE Transactions on Systems, Man, and Cybernetics, 

18, 183-190. 

Yang, Z. (2007). An interval based attribute ranking 

technique. Unpublished report, ITT Visual Information 

Solutions.  

Zadeh, L.A. (1965). Fuzzy sets. Information Control, 8, 

338–353. 

Zadeh, L.A. (1983). A computational approach to fuzzy 

quantifiers in natural languages, Computers and 

Mathematics with Applications, 9, 149-184.

 

 

33

https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6075047
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6075047
http://en.wikipedia.org/wiki/Claude_E._Shannon



