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Abstract: The paper aims to determine the effect of adding contextual models and kernel functions with fuzzy based 

noise classifier with remote sensing data. The non-linearity between class boundaries can be handled through the kernel 

functions and contextual models eliminates the probability of isolated pixels. Nine different Kernel functions have been 

combined with conventional Noise Clustering without Entropy classification method (KNC), to classify data obtained 

from Landsat-8 and Formosat-2 satellites. For contextual support Markov Random Field (MRF) models were 

introduced with KNC. Standard regularization model (smoothness prior) and four Discontinuity Adaptive (DA) models 

(edge preserving priors) have been studied with KNC and abbreviated as KNC-S-MRF, KNC-DA1-MRF, KNC-DA2-

MRF, KNC-DA3-MRF, KNC-DA4-MRF, respectively. An increase in overall accuracy has been observed when a 

comparative analysis has been done with the established Noise classifier. 

 

Keywords: Kernel functions, Kernel based Noise Clustering without Entropy (KNC), Markov Random Field (MRF) 

models, Regularization Model, Discontinuity Model. 

 

1.  Introduction 

 

Expansion of Remote Sensing applications have directed 

to availability of colossal quantity of data. Challenges to 

sustain the quality of such data also have increased, 

requiring more robust framework for processing and 

analysis of these data. Traditional classification 

techniques designate each pixel to a single land cover 

class resulting in a hard (or ‘crisp’) partitioning (Zhang 

and Foody, 2001). Due to coarse spatial resolution, more 

than one land-cover type may exist within a pixel, such a 

pixel is termed as mixed pixel (Foody, 1996) and 

ignorance of it resulted in a reduction in classification 

accuracy. Incorporation of mixed pixel has been 

facilitated in all stages of a classification process to 

produce accurate and meaningful land cover 

classifications from remote sensing images (Ibrahim et 

al., 2005). 

 

The extensive use of fuzzy logic (Zadeh, 1978) for 

classification leads into soft classifiers. Among the most 

prominent fuzzy classifiers, Fuzzy c-mean (FCM) had 

been successfully used for estimation and mapping of 

sub-pixel level land cover composition (Foody, 2000, 

Fisher and Pathirana, 1990), although it failed to handle 

noise. Possibilistic c-Means (PCM) was developed to 

overcome the drawback of FCM as PCM was able to 

surpass the effect of hyperline constant found in FCM 

(Chawla, 2010). The challenging problem of noise 

removal was considered from different perspectives 

(Jolion and Rosenfeld, 1989, Krishnapuram and Freg, 

1992) and among them Noise clustering was found to 

give the best performance (Dave, 1991; Dave 1993). 

Lately, it was proven that the Noise clustering algorithm 

is a generalization, where PCM and FCM are its special 

cases (Dave and Sen, 1997). 

 

Studies related to spatial contextual information in the 

classification process illustrates improvement in the 

classifiers robustness against noise when compared to 

purely spectral based classification algorithm. 

(Krishnapuram and Keller, 1996; Foody, 2000). Inclusion 

of contextual information while classifying helps in 

removing isolated pixel problem. MRF based contextual 

methods were used for classification and fusion of multi-

source data and it was proven that the classification 

accuracy has improved and is more reliable over other 

contextual methods (Solberg et al., 1996; Binaghi et al, 

1997). A Robust Fuzzy c-Means (RFCM) algorithm was 

developed by adding contextual information to the 

objective function of FCM using MRF, while performing 

image segmentation of Magnetic Resonance Images of 

brain (Pham, 2001). An Adaptive Bayesian Contextual 

classifier, which combines the advantages of Adaptive 

classifier and Bayesian Contextual classifier 

demonstrated, using MRF modeling of joint probabilities 

of classes of each pixel and its neighborhood could 

improve the classification accuracy by mitigating the 

effect of Speckle error (Jackson and Landgrebe, 2002). 

Providing contextual support to Noise classifier was 

proposed earlier with the aim to overcome sensitivity of 

noise and outliers on the classification result using S-

MRF or DA-MRF models (Harikumar, 2014).  

Integration of contextual information onto support vector 

machines classifier using MRF model was achieved by 

reformulating the prior energy function in terms of 

suitable SVM-like kernel expansion (Moser and Serpico, 

2010). 

 

The kernel methods map the input data to a higher 

dimensional space where the data turn out to be linearly 

separable (Awan and Sap, 2005). Studies related to 

kernels and assessment of fusion with fuzzy based 

classifier has been done earlier also. An unsupervised 

Kernel Noise clustering algorithm was also proposed 

(Chotiwattana, 2009) based on distances of kernel 

method (Gaussian and higher order polynomial) and was 

found to be relatively more resistant against noise. PCM 

(Possibilisticc-Mean) has been modified with KPCM by 

replacing Euclidean norm with Gaussian Kernel, resulting 

to increase in robustness to noise (Ganesan and Rajini, 

2010).  To deal with the drawback of fuzzy clustering 
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KFCM was introduced (Ravindraiah and Tejaswini, 

2013). Local kernel like KMOD and inverse 

multiquadratic kernel as well as the global kernels were 

studied and incorporated to enhance the capability of 

FCM (Bhatt and Mishra, 2013). (Rhee et. al., 2012) 

proposed a kernel based possibilistic clustering technique, 

in which Fuzzy Kernel c-Means (FKCM) algorithm for 

initialization of PCM was used and PCM was modified 

using kernel induced metric replacing Euclidean distance 

measure and showed better results than FCM, PCM, and 

FKCM. Incorporation of eight kernels with Fuzzy c-

Means classification to handle the nonlinearity among 

classes has shown improved accuracy (Byju, 2015). 

Entailing Kernels with fuzzy based classifier have shown 

effective results than the conventional ones.  

 

The objective of present paper is to develop a novel 

method that combines the positives of spectral 

classification with the contextual spatial information. 

Supervised Noise Clustering has been opted as the base 

classifier, and adding nine different kernel functions as 

the distance functions with it lead to derive a kernel based 

classifier, termed as, KNC (Sengupta et.al, 2019). For 

contextual support Markov Random Field (MRF) models 

have been incorporated with KNC. Standard 

regularization model (smoothness prior) and four 

Discontinuity Adaptive (DA) models (edge preserving 

priors) have been studied with KNC and abbreviated as 

KNC-S-MRF, KNC-DA1-MRF, KNC-DA2-MRF, KNC-

DA3-MRF, KNC-DA4-MRF, respectively. Image to 

image accuracy assessment has been formulated jointly 

with computation of overall accuracy using Fuzzy error 

matrix (FERM) of every kernel specified. 

 

2. Study area and dataset used 

 

The datasets used have been acquired from Landsat-8 and 

Formosat-2 satellites. Landsat8provides moderate-

resolution imagery, from 15 meters to 100 meters, of 

Earth’s land surface and operates in the visible, near-

infrared, short wave infrared and thermal infrared 

spectrums. Formosat2 captures panchromatic and 

multispectral data simultaneously with 2meters and 

8meters resolution respectively. The sensors’ spectral 

wavebands specifications are enlisted in table 1a and b. 

The site for the study work is situated in Haridwar district 

in the state of Uttarakhand, India. Area extends from 

29°52’49” N to 29°54’2” N and 78°9’43” E to 78°11’25” 

E. The site is identified with five land cover classes i.e. 

Water, Wheat, Forest, Riverine Sand, Fallow Land. 

 

 

 

   
(a) Band 1 – Band 2 (b) Band 1 – Band 3 (c) Band 1 – Band 4 

   
(d) Band 2 – Band 3 (e) Band 2 – Band 4 (f) Band 3 – Band 4 

 

 

Figure 1: Non-linearity in different classes as 2D scatter plots for Formosat2 for all classes identified. (Generated 

using ENVI 5.0) (Sengupta et.al, 2019) 

 

 

 

  

 Riverine Sand FallowLand  Water       Wheat       Forest      
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Table 1: (a)  Data Details of Landsat8 

Spectral Band Wavelength (µm) Resolution (m) 

Band 1 - Coastal 

aerosol 
0.43 - 0.45 30 

Band 2 - Blue 0.45 - 0.51 30 

Band 3 - Green 0.53 - 0.59 30 

Band 4 - Red 0.64 - 0.67 30 

Band 5 - Near 

Infrared (NIR) 
0.85 - 0.88 30 

Band 6 – Short 

Wavelength Infrared 1 
1.57 - 1.65 30 

Band 7 –Short 

Wavelength Infrared 2 
2.11 - 2.29 30 

Band 8 -  

Panchromatic 
0.50 - 0.68 15 

Band 9 – Cirrus 1.36 - 1.38 30 

 

Table 1: (b) Data Details of Formosat2 

Spectral Band Wavelength (µm) Resolution (m) 

Band 1 - Blue 
0.45 - 0.52  

 
8 

Band 2 - Green 
0.52 - 0.60  

 
8 

Band 3 - Red 
0.63 - 0.69  

 
8 

Band 4 - Near 

Infrared (NIR) 

0.76 - 0.90  

 
8 

Band 5 -  

Panchromatic 

0.45 – 0.90  

 
2 

 

The 2D scatter plot in figure 1 shows presence of non-

linear data in the specified dataset. Samples taken from 

the site cannot easily identify individual classes 

indicating the presence of non-linearity or cannot be 

separated linearly. While using 4thband as NIR (Near 

Infrared), there is drastic change of reflectance energy, 

either increasing for vegetation case or decreasing in 

water case that is why while using 4th band scatter plot is 

non-linear. 

 

3. Hybrid classification – Kernel based noise 

classification with MRF Models 

 

Incorporating contextual features with fuzzy based 

classifiers have quantified the classification.  Markov 

Random Fields (MRF) used for modelling spatial 

contextual information and integrated into the objective 

function of the noise classifier and have shown positive 

impact in the classification accuracy (Harikumar, 2014). 

The novelty of the present work is to incorporate kernel 

methods with supervised Noise Clustering, and to 

integrate contextual MRF models with it. 

 

3.1 Kernel methods used 

The aim of kernel method is to identify a linearly 

separating hyperplane that separates the classes in higher 

dimensional feature space (Hofmann et al., 2008). The 

feature map (𝜑), given in Eq. (3.1), is the mapping 

function that non-linearly maps the data to a higher 

dimensional feature space and the kernel function (𝐾), 

mentioned in Eq. (3.2), implicitly computes the dot 

product between two vectors 𝒙 and 𝒙i in higher 

dimensional feature space without explicitly transforming 

𝒙 and 𝒙i to that higher dimensional feature space.  

 
qp

RR  : , where p<q   

 (3.1) 

   ii xxxxK  ., 






 
   (3.2) 

A total of nine kernels functions have been considered in 

this study categorized as: four local kernels, three global 

kernels, spectral kernel, hypertangent kernel.  

 

3.1.1 Local kernels  

They are based on evaluation of the quadratic distance 

between training samples and the mean vector of the 

class. Only feature vectors that are close or in proximity 

of each other have an influence on the kernel value 

(Kumar, 2007). In this research, the value of the input 

vector was normalized between [0, 1] and thus acceptable 

result can be produced at "σ" equals 1. The different local 

kernels were defined as follows: 

 

Radial Basis Function (RBF)  

The RBF kernel is defined by exponential function as 

shown in equation (3.3). Here, 𝒙i is the feature vector in 

the data and 𝒗𝒋 is the mean vector of class 𝑗. 𝜎 determines 

the width of the kernel; 𝑎 and 𝑏 are the constants. By 

replacing 𝑎 and 𝑏 by 1 the Gaussian kernel can be 

obtained. In this study the value of 𝑎 and 𝑏 were taken to 

be 2 and 3 respectively (Kandpal, 2016). 
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KMOD- (Kernel with Moderate Decreasing)  

KMOD is the distance based kernel function (Ayat, et al., 

2001) as shown in equation (3.4). It shows better result in 

classifying closely related datasets (highly correlated) and 

has shown better accuracy than Radial Basis Function 

(RBF) and polynomial kernel. 
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The parameter 𝛾 and 𝜎 controls the decreasing speed of 

the kernel function and the width of the kernel 

respectively. In this study the value of 𝛾 was taken to be 

one. 

 

Gaussian  

The Gaussian kernel is a special case of radial basis 

function kernel (Byju, 2015), shown in equation (3.5). 

Here, 𝒙𝒊 is the feature vector in the image and 𝒗𝒋 is the 

mean vector of the class. 
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Inverse Multi-Quadratic (IMQ) 

The inverse multi-quadratic kernel is defined as in 

equation (3.6) (Byju 2015; Kandpal, 2016). Here the 

value of 𝑐 was taken to be one. 
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3.1.2 Global kernels 

In global kernels, the samples that are far away from each 

other have an influence on the kernel value. All the 

kernels which are based on the dot-product are global 

(Kumar, 2007). The different global kernels are as 

follows: 

 

Linear kernel  

Linear kernel is one of the simplest kernel functions. It is 

defined as the inner product of the input feature vectors, 

as shown in equation (3.7). 

 

jiji vxvxK ., 





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   (3.7) 

 

Polynomial  

The polynomial kernel is a positive definite kernel i.e. 

each element of the kernel matrix (a kernel matrix is a 

𝑛×𝑛 matrix of feature vector) is positive, shown in 

equation (3.8). 𝑃 defines the degree of the polynomial 

function and c is the constant (Kandpal, 2016). In this 

work value of P has been taken from 1 to 4. The value of 

c has been taken to be zero. 
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
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P
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Sigmoid  

Sigmoid kernel is a hyperbolic tangent function, as 

shown in equation (3.9). The parameter 𝛼 work as scaling 

parameter for the kernel function and defines width of the 

kernel. The best possible value for 𝛼 and c were when 𝛼> 

0and c< 0 (Byju, 2015). 
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..tanh,   (3.9) 

 

3.1.3 Spectral kernel 

The spectral kernel takes into consideration the spectral 

signature concept (Kandpal, 2016), as shown in equation 

(3.10). These kernels are based on the use of spectral 

angle (𝒙,) to measures the distance between the feature 

vector 𝒙 and the mean vector of the class 𝒗i. It is 

expressed as follows: 
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3.1.4  Hyper tangent kernel 

The hyper tangent kernel is a hyperbolic tangent function, 

as shown in equation (3.11). The adjustable parameter 𝜎 

defines the width or the scale of the kernel. Here 𝑥 and 𝑣𝑖 
are the feature vectors in the data. It has been seen that 

the hyper tangent kernel outperforms other kernels when 

applied to a large data set (Kandpal, 2016). 
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3.2 Markov Random Field (MRF) models 

Contextual information refers to the relationship of an 

entity with its neighbourhood and in context of an image 

pixel; it refers to the information obtained from the 

neighbourhood pixels. Proper use of context can improve 

the classification accuracy (Jackson and D. A. Landgrebe, 

2002; Solberg.et.al, 1996; Tso and Mather, 2009; 

Magnussen et.al., 2004). Markov Random Field (MRF) is 

a useful tool for modelling the contextual information and 

widely used to image segmentation and restoration 

problem (Besag, 1974; Li, 2009). 

 

Study over MRF Models have been accomplished and 

propagated stating the relevance of neighbourhood pixel 

with local interaction (Harikumar, 2014). A prior in an 

image context, refers to the information about the image 

data available beforehand. Analytical regularizers are 

used for representing the prior energy. The general form 

of the regularizer is given in equation 3.12.  
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    (3.12) 

 

 

 

Here  fU  is the prior energy represented using the nth 

order regularizers, 
   xfg
n

 is the Potential function 

that in turn is dependent on the irregularity in
  xf
n 1

, N 

is the highest order considered and n  is the weighting 

factor and is always greater than or equal to 0. Over 

smoothening of the boundaries can lead to blurred image 

boundary, therefore, to control smoothening the Adaptive 

Potential Function (APF) placed within the regularizers 

and hence four different APFs have been used and hence 

four DA models. Table 2 demonstrates the mathematical 

models of the MRF Models to study in the present work. 
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Table 2: Mathematical Design of the priors (Li 1995; 

Li, 2009; Harikumar,2014). 

Contextual 

Model 
Mathematical Design of Priors 

Smoothness Prior 

– S 
      2  gxfg
n
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3.3 Kernel Based Noise Clustering without entropy 

classification (KNC) 

The KNC classifier has been derived by using kernel 

methods with Noise clustering without entropy classifier 

(NC). The objective function of the NC in fuzzy mode 

(Dave, 1991; Hathaway et.al, 1996; Harikumar, 2014) 

expressed as shown in equation (3.13): 
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Where 1 CNU matrix, V= (ν1…νC), C is the number 

of classes, N is the total number of pixels in the image, m 

is the fuzzification factor and is normally positive 

(Sengar et.al, 2012), µij represent the membership value 

of ith pixel in the jth class, µi,c+1 represents the 

membership values of the noise class, vj is the mean value 

(cluster center) of the jth class, xi is the vector value of the 

ith pixel, D is the Euclidean distance between 


ix and 


jv

and δ is a positive constant called the Noise distance.  

 

Replacing the distance function D with (3.14), KNC 

objective function derives, as stated in equation (3.15) 

(Sengupta et.al. 2019). 
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Furthermore, KNC has been modelled with the 

smoothness prior, and discontinuity adaptive (DA) .Thus, 

the hybrid classifier mentioned from equation (3.16) to 

(3.20) will be referred as KNC S-MRF,KNC DA1-MRF, 

KNC DA2-MRF, KNC DA3-MRF and KNC DA4-MRF 

classifiers respectively.

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, denotes the posterior 

probability, β is the weight factor associated with a 

pixel’s neighbors and Nj represents the neighborhood 

window around pixel i

.  
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3.4 Mean-variance method 

Verifying the edge preservation is significant; a standard 

method to analyze separately the distributions of grey 

levels of the two regions on either side of the edge, where 

the difference between the averages values within the two 

regions indicates the steepness of the edge (Wen and Xia, 

1999). 

 

The membership value of a unit in a fraction image is 

high if the pixel exists at a location of a known class 

(Class A) and for the unknown class it is low (Non-Class 

A), elaborated in figure 2. Consequently, the mean of the 

membership value will be high and the variance will be 

low in case of a homogeneous area for a known class 

location in a fraction image, leading to edge preservation. 

This concept has been used here to verify the edge 

preservation, to optimize contextual parameters. 

 

 
Figure 2: Method to verify edge preservation 

 

4. Accuracy assessment techniques 

 

To assess the discussed soft classifier, simulated image 

technique has been opted as well as FERM (Fuzzy error 

matrix) has been opted for computing the accuracy of 

KNC-S-MRF, KNC-DA-MRF models and NC S-MRF, 

NC-DA-MRF models. Accuracy assessment of sub-pixel 

classified output has been done with Java based tool 

(Kumar et.al, 2006). 

 

4.1 Simulated image technique 

The simulated image technique has been introduced to 

evaluate the fuzzy based classifier behaviour. The 

concept is to assign membership values to feature vectors 

from mean vector of the classes on the basis of distance 

measure. It is generated on the sample data for each class 

with desired number of bands. The technique facilitates to 

compare the classifier output with known input over 

defined location and also makes easy to identify the 

behaviour of classifier with the mixed pixels. Distribution 

is such that, the membership values of pure pixel in the 

classified output of a class must be maximized (close to 

1). The mixed pixels were simulated with two variations, 

one with composition of 50:50 in   between two different 

classes and other with composition of 30:30:40, the target 

membership value of 0.50, 0.40 and 0.30 is expected 

from the pixel with 50%, 40% and 30% belongingness 

for a class respectively (Figure 3). 

 
Figure 3: Simulated Image of Formosat 2 (Class 

Distribution) 

 

4.2 FERM (Fuzzy Error Matrix) 

It is a square array of positive fractional value varying 

between [0, 1]. The column RN usually represent the 

sample elements assigned to the reference class n while 

the rows indicate the sample elements assigned to the 

classified class m (Binaghi et al., 1999). The element in 

fuzzy error matrix (M) at row m and column n for a 

feature vector x is computed as shown in equation (4.1). 

 

M       



Xx

RC xxnm
nm

 ,min,  (4.1) 

In equation (4.1), x is the overall sampled data set.
mC   

and
nR are the membership values for the classified and 

referenced data. The "min" operator is the traditional 

fuzzy set operator, it returns the minimum membership 

value between the classified and referenced data set for a 

class. 

 

5. Results and analysis 

 

5.1 Parameter estimation 

The objective function of all KNC S-MRF and KNC DA-

MRF classifiers involves certain parameters, which need 

to be initialized before the optimization of the 

membership values, thus, implementation of this hybrid 

classifier has been done in Java. Base classifier 

estimation has been done by a series of classification 

upon simulated image, using different kernels for every 

combination of m ranging between [1.1, 5.0] and the 

resolution parameter, δ, taken in the range of 10 to 106. 

Hybrid parameters have been estimated through 

simulated annealing (Bertsimas and Tsitsiklis, 1993) and 

mean variance method, initial T0 has been set to 3 where 

optimized final temperature has been taken to be 0.90; λ 

has been defined in the range between 0 and 1, range of β 

to be 1 to 100, and that of ϒ in between 0 and 1.  

 

5.1.1 Base classifier parameter estimation 

A series of kernel-based classification has been applied 

upon simulated image with every combination of 

definedm and δ. For brief demonstration, figure 4, 

displays the kernel wise membership values of wheat 

class, with varying δ, where it stops increasing at δ=104, 

here, n is representing the degree of resolution parameter 

and is related as δ= 10𝑛. Remaining classes have also 

shown similar behaviour. Similarly, membership values 
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have been computed for both pure and mixed pixel 

variations to optimize m. Table 3 demonstrates kernel 

wise membership values across varying m from 1.5 to 

5.0. The tabular representation consists of three variations 

of pure pixel and mixed pixels as elaborated in section 

4.1. Variation in optimized value of m have been seen 

from kernel to kernel therefore a specific range has been 

defined as an optimal range of m that is found to be [2.7, 

5.0], leading to stability of membership values. 

Polynomial Kernels with degree 1 to 4 have shown poor 

performance leading to minimal membership values close 

to 0. Membership values computed, as shown in figure 4 

and table 3 supports integer based values, hence, small 

fractional values rounded off to zero. 

 

Table 3: Kernel wise membership value representation of wheat class with varying fuzzification factor (m) 

(a) Pure Pixel Composition (b) Mixed Pixel Composition (50:50) (c) Mixed Pixel Composition(30:30:40) 

(a) 

Kern

els → 

m↓ 

Linea

r 

Hype

rtang

ent  

Gaus

sian 

Sigm

oid 

KMO

D 
IMQ 

Radi

al 

Spect

ral 
P1 P2 P3 P4 

1.5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 

2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 

2.5 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.10 0.00 0.00 

2.7 0.98 0.98 0.98 0.99 0.98 0.98 0.98 0.89 0.98 0.12 0.00 0.00 

3 0.94 0.93 0.93 0.93 0.92 0.93 0.93 0.93 0.94 0.16 0.00 0.00 

3.5 0.86 0.86 0.86 0.86 0.85 0.91 0.86 0.86 0.86 0.20 0.00 0.00 

4 0.78 0.79 0.79 0.79 0.77 0.78 0.78 0.75 0.78 0.24 0.00 0.00 

4.5 0.71 0.72 0.72 0.72 0.70 0.71 0.71 0.69 0.71 0.25 0.01 0.00 

5 0.64 0.65 0.66 0.66 0.64 0.65 0.65 0.64 0.64 0.26 0.02 0.00 

*P1 – Polynomial (Degree 1), P2 – Polynomial (Degree 2),  

  P3 – Polynomial (Degree 3), P4 – Polynomial (Degree 4) 

(b) 

*P1 – Polynomial (Degree 1), P2 – Polynomial (Degree 2),  

  P3 – Polynomial (Degree 3), P4 – Polynomial (Degree 4) 

(c) 

Kern

els → 

m↓ 

Linea

r 

Hype

rtang

ent 

Gauss

ian 

Sigm

oid 

KMO

D 
IMQ 

Radia

l 

Spect

ral 
P1 P2 P3 P4 

1.5 0.01 0.02 0.02 0.02 0.04 0.03 0.03 0.01 0.01 0.00 0.00 0.00 

2 0.05 0.07 0.07 0.07 0.07 0.07 0.07 0.05 0.05 0.00 0.00 0.00 

2.5 0.11 0.13 0.14 0.14 0.15 0.14 0.14 0.11 0.11 0.00 0.00 0.00 

2.7 0.11 0.15 0.14 0.16 0.15 0.15 0.15 0.14 0.11 0.00 0.00 0.00 

3 0.13 0.15 0.16 0.15 0.16 0.16 0.16 0.13 0.13 0.00 0.00 0.00 

3.5 0.14 0.16 0.16 0.16 0.17 0.16 0.16 0.15 0.14 0.01 0.00 0.00 

4 0.14 0.17 0.17 0.16 0.17 0.17 0.17 0.15 0.14 0.02 0.00 0.00 

4.5 0.15 0.17 0.18 0.17 0.18 0.18 0.18 0.16 0.15 0.03 0.00 0.00 

5 0.15 0.18 0.18 0.17 0.18 0.18 0.18 0.16 0.15 0.04 0.00 0.00 

*P1 – Polynomial (Degree 1), P2 – Polynomial (Degree 2),  

  P3 – Polynomial (Degree 3), P4 – Polynomial (Degree 4) 

 

Kern

els → 

m↓ 

Linea

r 

Hype

rtang

ent 

Gaus

sian 

Sigm

oid 

KMO

D 
IMQ 

Radia

l 

Spect

ral 
P1 P2 P3 P4 

1.5 0.23 0.36 0.36 0.04 0.21 0.35 0.35 0.05 0.23 0.00 0.00 0.00 

2 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.21 0.00 0.00 0.00 

2.5 0.20 0.25 0.26 0.15 0.25 0.21 0.25 0.16 0.20 0.00 0.00 0.00 

2.7 0.19 0.21 0.22 0.15 0.22 0.20 0.20 0.16 0.19 0.00 0.00 0.00 

3 0.19 0.24 0.24 0.17 0.22 0.23 0.23 0.18 0.19 0.00 0.00 0.00 

3.5 0.19 0.24 0.24 0.17 0.22 0.23 0.23 0.18 0.19 0.00 0.00 0.00 

4 0.18 0.22 0.23 0.18 0.22 0.22 0.22 0.18 0.18 0.01 0.00 0.00 

4.5 0.18 0.22 0.22 0.18 0.21 0.22 0.22 0.18 0.18 0.02 0.00 0.00 

5 0.16 0.22 0.23 0.18 0.22 0.22 0.22 0.18 0.16 0.04 0.00 0.00 

67



Journal of Geomatics  Vol. 13, No. 1, April 2019 

 

 
Figure 4: Kernel wise membership value representation of wheat class in accord with Noise Distance (δ = 10N). 

*P1 – Polynomial (Degree 1), P2 – Polynomial (Degree 2), P3 – Polynomial (Degree 3), P4 – Polynomial (Degree 

4) 

 

5.1.2 Contextual parameter estimation 

Contextual parameters include, the weight factor which 

controls the spatial and spectral component (λ), 

neighborhood weight in the case of in case of S-MRF 

models (β) and constant involved in the case DA model 

(γ). Estimation has been done upon the fractional 

images of KNC-S-MRF and KNC DA-MRF 

classification for Landsat8. Table 4 displays the 

optimal range of hybrid parameters in case of KNC-S-

MRF found to be λ lying between 0.7to 0.9, β=7 to 20, 

similarly in KNC DA1-MRF λ=0.1with ϒ=0.1, KNC 

DA2-MRF λ=0.7 with ϒ=0.7 to 0.9, KNC DA3-MRF 

λ=0.7, 0.8 with ϒ=0.6 to 0.9 and KNC DA4-MRF 

λ=0.9 with ϒ=0.8, 0.9. 

 

Table 4: a) KNC estimation over edge verification for Landsat8 data (Class Water) 

(Part – 1) 

Classifier 

→  

Contextual  

Models ↓ 

Hybrid 

Parameters 
Linear Hypertangent Gaussian Radial KMOD Multiquadratic 

λ β/ϒ MD VD MD VD MD VD MD VD MD VD MD VD 

S-MRF 0.8 20 -1 0 174 103 176 135 169 149 156 200 167 149 

DA1-MRF 0.1 0.1 56 467 179 39 181 44 175 48 162 70 173 47 

DA2-MRF 0.8 0.8 0 0 188 -25 187 -41 183 -49 169 21 185 -53 

DA3-MRF 0.7 0.8 0 0 172 108 177 125 166 134 153 208 167 157 

DA4-MRF 0.8 0.9 0 0 170 23 178 -89 170 
-

122 
90 7784 165 55 

(Part - 2) 

Classifier 

→  

Contextua

l  Models 

↓ 

Hybrid 

Parameter

s 

Sigmoid Spectral 

Polynomia

l 

Degree=1 

Polynomia

l 

Degree=2 

Polynomia

l 

Degree=3 

Polynomia

l 

Degree=4 

NC 

(Euclidean

) 

β/ϒ β/ϒ 
M

D 
VD 

M

D 
VD MD VD MD VD MD VD MD VD MD VD 

S-MRF 0.8 20 
148 

575

2 132 387 -1 0 0 0 0 0 0 0 -1 0 

DA1-

MRF 
0.1 0.1 

184 15 133 142 56 467 0 0 0 0 0 0 56 467 

DA2-

MRF 
0.8 0.8 

182 39 134 138 0 0 0 0 0 0 0 0 0 0 

DA3-

MRF 
0.7 0.8 

177 124 134 44 0 0 0 0 0 0 0 0 0 0 

DA4-

MRF 
0.8 0.9 

60 

848

3 92 

538

2 0 0 0 0 0 0 0 0 0 0 

*MD – Mean Difference, VD – Variance Difference 
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Table 4: b) KNC estimation over edge verification for Landsat8 data (Class Wheat) 

(Part – 1) 

Classifier →  

Contextual  

Models ↓ 

Hybrid 

Parameters 
Linear Hypertangent Gaussian Radial KMOD Multiquadratic 

λ β/ϒ MD VD MD VD MD VD MD VD MD VD MD VD 

S-MRF 0.8 20 0 0 155 103 158 140 151 148 137 159 150 150 

DA1-MRF 0.1 0.1 25 113 164 -16 167 0 161 -4 147 2 159 3 

DA2-MRF 0.8 0.8 -1 0 154 2 153 171 149 112 85 6134 145 194 

DA3-MRF 0.7 0.8 -1 0 158 3 158 89 158 106 145 117 160 56 

DA4-MRF 0.8 0.9 -1 0 148 77 140 -150 141 181 134 302 140 186 

(Part – 2) 

Classifier 

→  

Contextual  

Models ↓ 

Hybrid 

Parameters Sigmoid Spectral 

Polynomi

al 

Degree=1 

Polynomi

al 

Degree=2 

Polynomi

al 

Degree=3 

Polynomi

al 

Degree=4 

NC 

(Euclidean

) 

λ 
β/

ϒ 
MD VD MD VD MD 

V

D 
MD 

V

D 
MD 

V

D 
MD 

V

D 
MD VD 

S-MRF 0.8 20 
165 161 52 

329

8 0 0 0 0 0 0 0 0 0 0 

DA1-MRF 0.1 0.1 
178 57 114 126 25 

11

3 0 0 0 0 0 0 25 113 

DA2-MRF 0.8 0.8 
135 

481

4 117 165 0 0 0 0 0 0 0 0 -1 0 

DA3-MRF 0.7 0.8 174 45 106 197 0 0 0 0 0 0 0 0 -1 0 

DA4-MRF 0.8 0.9 163 179 106 195 0 0 0 0 0 0 0 0 -1 0 

*MD – Mean Difference, VD – Variance Difference 

 

Table 4:c) KNC estimation over edge verification for Landsat8 data (Class Forest) 

(Part – 1) 

Classifier 

→  

Contextual  

Models ↓ 

Hybrid 

Parameters 
Linear Hypertangent Gaussian Radial KMOD Multiquadratic 

λ β/ϒ MD VD MD VD MD VD MD VD MD VD MD VD 

S-MRF 0.8 20 0 0 178 54 182 61 176 76 166 98 176 73 

DA1-MRF 0.1 0.1 48 305 178 54 181 61 176 76 166 98 175 72 

DA2-MRF 0.8 0.8 -1 0 178 54 181 61 176 76 166 98 175 72 

DA3-MRF 0.7 0.8 0 0 182 -4 186 -18 180 8 171 58 174 36 

DA4-MRF 0.8 0.9 0 0 190 -106 193 -16 182 73 167 268 185 67 

(Part – 2) 

Classifier 

→  

Contextua

l  Models 

↓ 

Hybrid 

Parameter

s 

Sigmoid Spectral 
Polynomia

l Degree=1 

Polynomia

l Degree=2 

Polynomia

l Degree=3 

Polynomia

l Degree=4 

NC 

(Euclidean

) 

λ β/ϒ 
M

D 
VD 

M

D 
VD MD VD MD VD MD VD MD VD MD VD 

S-MRF 0.8 20 181 64 92 98 53 0 0 0 0 0 0 0 0 0 

DA1-

MRF 
0.1 0.1 

179 74 92 98 48 305 0 0 0 0 0 0 48 305 

DA2-

MRF 
0.8 0.8 

179 74 92 98 -1 0 0 0 0 0 0 0 -1 0 

DA3-

MRF 
0.7 0.8 

194 -88 104 37 0 0 0 0 0 0 0 0 0 0 

DA4-

MRF 
0.8 0.9 

195 

32

0 129 

16

1 0 0 0 0 0 0 0 0 0 0 

*MD – Mean Difference, VD – Variance Difference 
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Table 4: d) KNC estimation over edge verification for Landsat8 data (Class Riverine) 

(Part – 1) 

Classifier 

→  

Contextual  

Models ↓ 

Hybrid 

Parameters 
Linear Hypertangent Gaussian Radial KMOD Multiquadratic 

λ β/ϒ MD VD MD VD MD VD MD VD MD VD MD VD 

S-MRF 0.8 20 -1 0 183 119 195 95 181 141 163 207 181 138 

DA1-MRF 0.1 0.1 32 117 189 117 200 114 187 149 168 206 188 148 

DA2-MRF 0.8 0.8 0 0 183 122 195 121 182 154 163 200 184 228 

DA3-MRF 0.7 0.8 0 0 175 48 186 56 173 97 154 165 174 80 

DA4-MRF 0.8 0.9 0 0 144 5863 208 -83 111 10433 126 5108 79 10864 

(Part - 2) 

Classifier →  

Contextual  

Models ↓ 

Hybrid 

Parameters Sigmoid Spectral 

Polynomi

al 

Degree=1 

Polynomi

al 

Degree=2 

Polynomi

al 

Degree=3 

Polynomi

al 

Degree=4 

NC 

(Euclidean) 

λ β/ϒ MD VD MD 
V

D 
MD 

V

D 
MD 

V

D 
MD 

V

D 
MD 

V

D 
MD 

V

D 

S-MRF 0.8 20 
20

1 

-

451 118 -73 53 0 0 0 0 0 0 0 -1 0 

DA1-MRF 0.1 0.1 
19

9 

-

492 118 -80 32 

11

7 0 0 0 0 0 0 32 

11

7 

DA2-MRF 0.8 0.8 
21

8 75 115 -167 0 0 0 0 0 0 0 0 0 0 

DA3-MRF 0.7 0.8 
20

6 

-

180 126 

18

2 0 0 0 0 0 0 0 0 0 0 

DA4-MRF 0.8 0.9 
21

8 

-

184 130 

11

8 0 0 0 0 0 0 0 0 0 0 

*MD – Mean Difference, VD – Variance Difference 

 

Table 4: e) KNC estimation over Edge Verification for Landsat8 data (Class Fallow) 

(Part – 1) 

Classifier 

→  

Contextual  

Models ↓ 

Hybrid 

Prameters 
Linear Hypertangent Gaussian Radial KMOD Multiquadratic 

λ β/ϒ MD VD MD VD MD VD MD VD MD VD MD VD 

S-MRF 0.8 20 0 0 132 4315 156 235 152 236 137 276 119 4543 

DA1-MRF 0.1 0.1 20 55 162 115 162 138 156 161 142 172 154 141 

DA2-MRF 0.8 0.8 
0 0 170 75 165 102 167 126 67 6783 164 70 

DA3-MRF 0.8 0.8 0 0 168 283 168 367 163 463 150 646 161 450 

DA4-MRF 0.8 0.9 
0 0 97 10454 129 11975 62 11023 -11 100 56 11030 

(Part – 2) 

Classifier 

→  

Contextua

l  Models 

↓ 

Hybrid 

Prameter

s 

Sigmoid Spectral 
Polynomia

l Degree=1 

Polynomia

l Degree=2 

Polynomia

l Degree=3 

Polynomia

l Degree=4 

NC 

(Euclidean

) 

λ β/ϒ 
M

D 
VD 

M

D 
VD MD VD MD VD MD VD MD VD MD VD 

S-MRF 0.8 20 158 24 19 637 0 0 0 0 0 0 0 0 0 0 

DA1-

MRF 
0.1 0.1 

168 49 63 111 20 55 0 0 0 0 0 0 20 55 

DA2-

MRF 
0.8 0.8 

170 -281 46 

101

9 0 0 0 0 0 0 0 0 0 0 

DA3-

MRF 
0.8 0.8 

167 94 64 

247

4 0 0 0 0 0 0 0 0 0 0 

DA4-

MRF 
0.8 0.9 

172 

14

5 3 849 0 0 0 0 0 0 0 0 0 0 

*MD – Mean Difference, VD – Variance Difference 

  

70



Journal of Geomatics  Vol. 13, No. 1, April 2019 

 

Table 5: Fractional images obtained from KNC S-MRF and KNC DA-MRF classifiers on Formosat 2 and 

Landsat 8 against the optimal parameters 

Classifier Water Wheat Forest Riverine Sand Fallow 

KNC S-MRF 

Gaussian (Formosat2 ) 

     

Gaussian(Landsat8) 

     

KNC DA1-MRF 

Sigmoid (Formosat2) 

     

Sigmoid (Landsat8) 

     

KNC DA2-MRF 

Hypertangent (Formosat2) 

     

Hypertangent (Landsat8) 

     

KNC DA3-MRF 

Sigmoid (Formosat2) 

     

Sigmoid(Landsat8) 

     

KNC DA4-MRF 

Hypertangent (Formosat2) 

     

Hypertangent(Landsat8) 
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5.2 Accuracy assessment 

Studied contextual classification has been applied upon 

Landsat8 and Formosat2 image and fractional images 

generated with the optimized base, as shown in Table 5. 

FERM based accuracy assessment has been done using 

the output of Landsat8 and output of Formosat2 as 

reference map for KNC S-MRF and for KNC DA1-MRF, 

KNC D2-MRF, KNC DA3-MRF, KNC DA4-MRF 

models using all nine kernels. Table 6 shows the overall 

accuracy of best performing kernels along with the 

overall accuracy of conventional NC based MRF models. 

Analyzing the performances of various kernels with these 

contextual models, KNC DA1-MRF is found to be more 

promising from the perspective of classification accuracy. 

Overall accuracy of kernel based contextual models is 

better than the conventional Euclidean distance based 

contextual models. 

 

Table 6:  Accuracy assessment results for MRF based 

NC and MRF based KNC using single kernel 

 CONTEXTUAL MODELS 

CLASSIFIER 
S-MRF 

DA1-

MRF 

DA2-

MRF 

DA3-

MRF 

DA4-

MRF 

NC 

(Euclidean) 
4.00% 6.64% 0.79% 0.91% 0.90% 

Gaussian 

Kernel 
76.63% 81.09% 70.38% 59.42% 52.59% 

Sigmoid 73.51% 75.38% 66.30% 51.04% 37.97% 

Hypertangent 75.95% 78.75% 70.09% 60.91% 50.85% 

 

6. Conclusions 

 

The study focused to realize handling of non-linearity 

between class boundaries by integrating spatial features 

with kernel based noise classifier. This model takes 

account of involving MRF models into supervised kernel 

based Noise classifier (KNC). KNC S-MRF (smoothness 

prior) and four different Discontinuity Adaptive KNC 

DA1-MRF, KNC D2-MRF, KNC DA3-MRF, and KNC 

DA4-MRF models have been introduced and 

experimented to characterize both the contextual as well 

as spectral information. From the experiments performed 

we found that the KNC DA1-MRF model has performed 

better than the remaining models. Gaussian Kernel 

followed by Hypertangent Kernel has shown better output 

amongst the nine kernels.  The study concludes that 

contextual MRF models when associated with kernel 

based have shown increase in accuracy as compared to 

Noise Classifier with Euclidean distance. 
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