
Journal of Geomatics  Vol. 13, No. 1, April 2019 

© Indian Society of Geomatics  

Stress mapping of Sundarban mangroves with Sentinel-2 images using Discriminant 

Normalised Vegetation Index (DNVI) and Fuzzy classification technique 
 

Sudip Manna* and Barun Raychaudhuri 

Department of Physics, Presidency University, Kolkata-700073, West Bengal, India 

*Email: sudipmarine@gmail.com  

 

(Received: Jan 02, 2019; in final form: May 14, 2019) 

 

Abstract: The present work reports stress mapping of Sundarban mangroves implementing fuzzy classification technique 

to Sentinel-2 data. A recently developed health index for mangroves, namely Discriminant Normalised Vegetation Index 

(DNVI) was used as a tool for extracting the signatures of stressed and healthy vegetation from Sentinel-2 image along 

with field survey data. Fuzzy classification of stress and health conditions allowed the pixels to acquire partial 

membership of different classes. The partitioning of the classes was resolved by convolving the fuzzy classes based on 

DNVI and normalised difference vegetation index (NDVI). A saturating tendency of NDVI was noted when compared to 

DNVI and consequently the later was assigned the first layer for determining fuzzy convolution weightage. The precise 

result in the form of micro-level stress map indicates that the stress is a probable function of local geomorphology, 

topography and physiography. This method appropriately represents the fuzzy pattern of natural forest cover rather than 

that obtained with fixed algorithm based hard classification methods. The approach also highlights the need of mapping 

the stress of different assemblages discretely instead of a single health index. Similar index value for different mangroves 

may not represent similar health conditions for all of them because of their different physiology.  
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1. Introduction 

 

Paradigm changes in the global climate result in increasing 

global temperature, changing precipitation pattern, sea 

level rise, prolonged droughts, heat waves and continued 

intensification of storm events (Hansen et al., 1988; 

Knutson et al., 2010; Allen et al., 2010, Trenberth, 2011; 

Hoffman et al., 2017; Nerem et al., 2018; Mal et al., 2018). 

Mitigation of such a state and its further abatement 

requires assessment of the basic elements of the 

ecosystems. Forests, in addition to water bodies, 

atmospheric dynamics and human activities function as 

such elements and are the most important terrestrial 

ecosystems globally affected by anthropogenic activities 

(Prăvălie, 2018). 

 

Mangrove forests are categorically evergreen sturdy 

vegetation thriving in intertidal regions of tropics and sub-

tropics. They support coastal communities by means of 

invaluable ecosystem services (Himes-Cornell, 2018). 

Almost 40% of world’s population is living within 150 km 

of coastlines (Cohen et al., 1997) and the consequent 

pressure has incurred a massive loss to the mangrove area 

(Polidoro et al., 2010). Most of the residents of tropical and 

subtropical coasts greatly depend on mangrove ecosystems 

for their livelihood and sustenance, either directly or 

indirectly. Apart from that, these forests provide a 

protective buffer to the coasts against natural calamities 

like cyclones and storm surges. Presently these forests are 

spatially dwindling with ‘cryptic ecological degradation’ 

(Dahdouh-Guebas et al., 2005). Monitoring the mangroves 

has always been a challenge owing to their complex 

structure, muddy substrate and tough accessibility. 

Moreover, these vast ecosystems are sensitive to 

disturbances and may take over a decade to restore (Smith 

et al., 1994). In order to analyse such ecosystems and to 

address their present-day status, researchers use remote 

sensing as a synoptic tool.  

Remote sensing of mangroves requires substantial inputs 

due to differential resolutions of the satellite data. 

Literature survey illustrates the use of vegetation indices 

developed at various times for the interpretation of 

biophysical parameters using optical remote sensing 

(Kuenzer et al., 2011) in mangroves. Almost all of the 

established vegetation indices use spectral response at red 

and near infrared wavelengths (Bannari et al., 1995; Broge 

and Leblanc, 2001; Adam et al., 2010) as they are relatable 

to the leaf pigments and canopy structure. The knowledge 

of the stress on mangroves induced by geomorphology and 

other associated parameters is essential for understanding 

the forest dynamics. To date there has been little work on 

mangrove stress mapping using remote sensing. 

Chellamani et al. (2014) used NDVI for assessment of 

health status of mangroves in India from SPOT-VGT 

sensor and categorised mangroves into poor, moderate, 

health and very healthy. However, it was not stated as to 

how NDVI can directly portray the health, except for 

referring to previous studies where NDVI was reported 

(Tucker, 1979) to be sensitive to green leaf biomass. The 

health of mangroves cannot be depicted solely based on 

their canopy density or chlorophyll concentration because 

different mangrove species have their respective 

compositional construct and morphology. Domination of a 

single species covering top-canopies and association with 

other species standing as under-canopies results in the 

admixture of canopy reflectance and makes the mapping 

of the absolute composition challenging. However, active 

remote sensing is capable of interpreting subsurface 

organisation of flora (Kuenzer et al., 2011). In the case of 

analysis of spaceborne optical image, the combination of 

different spectra in a moderate resolution image is 

perplexed with background responses raising the need of 

fine resolution data. The phenology of the mangroves 

indicates their behaviour like evergreen forests as they 

continuously shed the senescent leaves to be replaced by 

the young ones. 
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Figure 1: Map showing Indian part of Sundarban (left) and Lothian island with adjoining islands of the 

study area. Inset maps not to scale. 
 

Stressed mangroves shed leaves resulting into gradual 

reduction of canopy cover. Various environmental 

stressors could also lead to reduction of stem density and 

overall basal area. The dwarfing is another effect leading 

to morphological changes including branching pattern, 

wood density and canopy height. Apart from that, 

mangroves located much inland and receiving infrequent 

tidal inundation also suffer from stresses (Saenger 2002). 

Therefore, health mapping of mangroves must account for 

various parameters like leaf density, chlorophyll 

concentration, water content, cellulose-lignin content, and 

nutrients; and most importantly the species or cohort 

specific assessment owing to difference in dissimilar and 

congeneric species. All these parameters are 

comprehensively not relatable to indices solely based on 

red and near infrared reflectance, hence require the 

integration of SWIR responses. The stress indicating index 

used for mangrove assessment, termed as DNVI was 

developed recently with Sentinel-2 data (Manna and 

Raychaudhuri 2018). Under circumstances like 

hypersaline substratum and inadequate influx of tidal and 

fresh water combined with sediment deposition, the 

mangroves stands gradually transform into saline blanks 

with population of dwarf and stunted individuals. Such 

regions also illustrate some rank higher than absolute zero 

on NDVI scale. DNVI on the other hand being derived 

from SWIR’s is sensitive to changes in the mangroves 

structural units (Kuenzer et al., 2011, Zhang et al., 2014) 

can portray the condition much competently. 

 

Mangrove species assemblages have specific affinity and 

spatial preferences from the perspective of distance from 

water and elevation from mean sea level. These stands 

propagate spatially with diverse species composition and 

inconstant ecological parameters which induces uneven 

growth among same species individuals and vice versa. 

Different species having dissimilar health condition may 

appear similar entities when observed by remote sensing 

and therefore, gives rise to the confusion or fuzziness in 

their mapping.  Here we present an approach for 

delineating species assemblage specific stress mapping 

based on DNVI developed from SWIR bands using fuzzy 

classification method. The objectives of the research were 

to (i) map the spatial distribution of mangroves based on 

their stress or health conditions and (ii) to delineate the 

mangrove species assemblage specific stress condition 

using fuzzy classification employing ground observation, 

DNVI and NDVI.  

 

2. Methods 

 

2.1 Study area 

Sundarban is the largest deltaic contiguous mangrove 

patch in the world. The Indian part of the forest is 

subdivided into a core zone of 1700 km2, manipulation 

zone of 2400 km2, restoration zone of 230 km2, and a 

development zone of 5300 km2
 (Nandy and Kuswaha, 

2011). As reported by IUCN, it is a habitat to a wide range 

of flora; 334 plant species belonging to 245 genera and 75 

families, 165 algae and 13 orchid species. The meso-

macrotidal estuary gets inundated and exposed twice a day 

by diurnal tides having amplitude of 2.5–7 m. The soil 

texture is chiefly clayey-loam whereas certain parts also 

have sandy-loam and silty soils. The present study was 

conducted in a wildlife sanctuary (Figure 1) in the Indian 

part of Sundarban and although situated very close to 

human settlements, it is having almost no influence from 

anthropogenic activities. 

 

2.2 Satellite image processing 

Sentinel-2 cloud free image archived by European Space 

Agency was used for the study and downloaded from the 

Sentinel data hub (https://scihub.copernicus.eu/). The 

reflectance image is comprised of 13 bands having 

different spatial resolutions (Table 1). All the bands were 

resampled using ESA-Sentinel Application Platform 

(SNAP) freeware. We used 10 m and 20 m resolution 
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bands for the classification purpose and the 60 m bands 

were used to derive the DNVI.  

 

Table 1: Spatial and spectral resolution of 

Sentinel S2A MSI 
Bands Spatial 

resolution 

(m) 

Central 

wavelength 

(nm) 

Bandwidth 

(nm) 

B1 60 443.9 27 

B2 10 496.6 98 

B3 10 560.0 45 

B4 10 664.5 38 

B5 20 703.9 19 

B6 20 740.2 18 

B7 20 782.5 28 

B8 10 835.1 145 

B8a 20 864.8 33 

B9 60 945.0 26 

B10 60 1373.5 75 

B11 20 1613.7 143 

B12 20 2202.4 242 

 

It has been already depicted by Zheng et al. (2017) that for 

Sentinel 2 data, downscaling pixel size of a coarse 

resolution band performs better than upscaling with 

respect to classification accuracy or delineation capacity. 

Additionally, the upscaling could deprive the entire dataset 

from spatial information contained in the fine spatial 

resolution bands. DNVI developed from 60 m bands 

(resampled to 10 m for compatibility with NDVI) is used 

only as a thematic parameter for guiding the fuzzy 

convolution. The raster data was processed, analysed and 

interpreted with the help of ENVI software. 

 

2.3 In-situ sampling 

Field inventory for the health condition of different species 

and their assemblages were conducted during March 2016. 

Eighty ground locations with details of species, 

physiological conditions like health, slenderness 

coefficients (Vovides et al., 2014) of trees and substratum 

conditions were recorded using GPS 72 (Garmin Ltd.). 

The soil salinity, slenderness coefficient (ratio of total 

height to girth), canopy density- leaf area index were 

recorded for the assessment of the health of mangroves. 

Leaf architecture and condition (thickened and or short 

leaves, crumbled or flat lamina), tree structure (straight 

trunked or gnarled) and distance of trees from the intertidal 

zone which mutually indicate the health condition of 

mangroves were also recorded.  Apart from that, as the 

weaker trees are more susceptible to insect infestations, the 

locations of such canopies were also recorded for the 

purpose. Random sampling was done in order to ensure the 

complete coverage of the study area and its floral 

compositions. In addition, the pure and mixed species 

assemblages were located precisely for their mapping. 

 

2.4 Species mapping 

Based on the field inventory and using Support vector 

machine (SVM) algorithm in ENVI (Exelisvis Inc., USA), 

the Sundarban mangrove area under consideration was 

delineated into different mangrove species, assemblage 

types and non-mangrove landcover including mudflats. 

Tree class abbreviations are elucidated in table 2. SVM is 

a non-parametric supervised learning model that exercise 

user defined signatures and has been used for precise 

mangrove mapping recently (Heumann 2011; Manna and 

Raychaudhuri, 2018). 

 

Table 2: Abbreviations used for mapping classes 

 Abbreviation Species details 

1 AA_m Avicennia alba matured 

assemblages 

2 AA_y Avicennia alba young 

assemblages 

3 AM Avicennia marina 

4 AM_sc Avicennia marina scrub 

assemblages 

5 AO Avicennia officinalis 

6 AR Agialites rotundifolia 

7 EA Excoecaria agallocha 

8 Mixed Mixed tall assemblages 

9 Mixed_sc Mixed scrub assemblages 

10 PP Phoenix paludosa 

 

2.5 Fuzzy classification 

Sundarban mangroves having heterogeneous species 

composition provide an opportunity to map this fuzzy 

variation with respect to individual species using fuzzy 

classification technique where there is no precise threshold 

between two similar yet different targets. Such 

classification is a type of soft classification with certain 

degree of uncertainty of the classified image. The targets 

are classified with multiple membership values 

considering the probability of them belonging to any class, 

which is the actual scenario of a diversely populated forest. 

The ambiguity is put in order by fuzzy clustering where 

the information from neighbouring pixels helps 

determining the actual parent category. 

 

The classification is based on fuzzy logic comprising the 

following steps. The reflectance image containing thirteen 

bands, each of 10 m spatial resolution was used to collect 

the signatures specific to a species or assemblage. The 

signature collection was executed by selecting thirty areas 

of interest (AOI) of different features and of different pixel 

counts based on ground survey, DNVI and species map. 

Based on the collected signatures, fuzzy classification was 

carried out considering two best classes per pixel. Using 

this classified image as the input along with the distance 

file of the two bands of DNVI and NDVI, fuzzy 

convolution was executed, which created a single 

classification layer of the total weighted inverse distance 

of all the classes in a window of pixels thereby creating a 

context based classification. The general expression for the 

total weighted distance of window for class k is given by 

 
 0 0 0

s s s
ij

i j l ijl

w
T k

D k  

    

where i and j are row and column index of window 

respectively, of the window of size s (33 used here) and 

class value k, wij being the weight table for the window. 

D(k) represents the distance file value for each window 

element for class k. The block diagram shown in figure 2 

represents the methodology in a schematic flowchart. 
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Figure 2: Schematic representation of the methodology 

used for species assemblage specific stress of 

mangroves 

 

3. Results and discussion 

 

The fuzzy convolution technique assigns the centre pixel 

of the running window within the class of the largest total 

inverse distance summed over the entire fuzzy classified 

bands. Classes with small distance values remain 

unchanged whereas those with large values may change to 

a neighbouring value, if sufficient number of neighbouring 

pixels with class value exists. In the present case (Figure 

3a), 33 window size was used (Figure 3b). A larger 

window size (77) might lead to over-generalization 

(Figure 3c). 

 

The health condition of mangroves is an apparently 

variable parameter, as their stand comprises different, 

congeneric species. Conventionally, the most popular 

vegetation index NDVI is used as indicator to several 

biophysical parameters including fractional vegetation 

cover estimates, leaf area index, vigour and even biomass 

(Curran et al., 1992, Jiang et al., 2006, Manna et al., 2014). 

However, several studies have depicted the saturating 

tendency of NDVI in predicting the biophysical properties 

of trees, especially of canopies which are mostly a 

voluminous and multi-strata entity. In mapping the overall 

health of a mangrove forest using remote sensing, an index 

like DNVI (Manna and Raychaudhuri, 2018) is capable of 

spatially portraying the stressed and healthy assemblages 

of mangroves. A comparative analysis (Figure 4) of NDVI 

with health index DNVI has depicted a linear relation with 

a saturating tendency at higher NDVI values. 

 

It is concluded from the saturating tendency of NDVI 

(Figure 4) that the discrimination of mangroves health 

condition by DNVI is more efficient than that using NDVI 

as a proxy. The selective difference in their capabilities 

might be due to the spectral ranges of reflectance used to 

derive the indices. NDVI is derived using red and near 

infrared bands indicative of leaf pigments and cell 

structure, whereas DNVI is developed using shortwave 

infrared bands responsive to structural properties 

associated with stress conditions, such as water content, 

leaf biochemicals, protein, lignin and cellulose (Kuenzer 

et al., 2011, Zhang et al., 2014). A general stress map 

generated using DNVI indicates the distribution of saline 

blanks and stressed vegetation precisely (Figure 5a). The 

different regions in figure 5a are indicated by similar 

colours but all the mangroves under the same category do 

not belong to same species (Figure 5a, b). 

 

 
Figure 3: A part of the study area depicting a) the true 

colour composite from Sentinel-2 data, b) fuzzy 

convolution result using 33 window and, c) fuzzy 

convolution result using 77 window 
 

 
Figure 4: Scatter plot of DNVI (x axis) versus NDVI (y 

axis) depicting the saturating tendency of NDVI 
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a)   b)   

Figure 5: Maps of Lothian wildlife sanctuary, Sundarban showing a) DNVI based generalised stress map and b) 

Species assemblage specific stress map* derived using fuzzy classification. (* the legend details are provided in 

Table 2; h and p in parentheses indicate health and poor conditions respectively). 

A similar index value for two different species does not 

indicate similar physiological conditions for both the 

candidates. Such variation in health condition might be due 

to their respective physiology, growing capability in 

particular eco-region and differential association with 

other species. The geographical variation also plays a 

crucial role in the growth and health conditions of 

mangroves. For instance, a species namely Ceriops 

decandra is reported to robustly grow up to a height of  

5m in the Bangladesh part of Sundarban (Hossain et al. 

2012), whereas this species is found to grow mostly as 

shrub, bushy and stunted in the Indian counterpart. A 

possible reason is the increasing salinity stress in Indian 

dominion due to gradual obstructions in paleo-channels 

bringing fresh water supply to the delta (Gopal and 

Chauhan, 2006). Moreover, in order to conserve and 

manage a forest stand with several species, the micro-level 

stress assessment is much more essential than representing 

a synoptic health status. 

 

 4. Conclusion 

 

DNVI, a health index developed from Sentinel-2 high 

resolution free data and validated with airborne 

hyperspectral satellite data was utilized for mapping the 

stress of mangroves in Sundarban. The representative 

species assemblage specific stress map was generated 

using the fuzzy principle where the ground data, 

established species map, and DNVI and NDVI were used 

as parameters for training the parametric classifier. While 

NDVI has always been used as an indicator to various 

biophysical parameters of vegetation, this study revealed 

that in mapping the health it saturates disabling the fine 

distinction among assemblages of good health.  

 

The implication of fuzzy classification and use of DNVI 

and NDVI for fuzzy convolution revealed the fuzzy nature 

of mangroves in its spatial distribution. The vertically 

multi-stratum canopied forest was mapped better using 

fuzzy classification than the fixed algorithm based hard 

classification methods. Given the observations and 

findings from the study, the approach highlighted the need 

of mapping the stress of different assemblages discretely 

that could not be portrayed by single stress image. The 

necessity of this approach is also supported by the fact that 

same index value for different mangroves does not indicate 

an equal health or stress. Furthermore, precise mapping of 

mangroves stress could be realized by plausible fusion of 
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high resolution non-commercial data like Sentinel-2 with 

compatible microwave data for more realistic assessment 

of mangrove forests having complex morphology and 

community structure. Precise micro-mapping in the cases 

like the above requires a superior classification technique 

rather than a hard classification method, especially in the 

case of variable forest cover where the confusion 

probability is higher in multispecies natural system like 

Sundarban. Therefore, the stress mapping at species and 

assemblage level was done using fuzzy classification that 

resulted in fine scale health-stress map of the mangroves 

in study area. 
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