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Abstract: Land use change particularly vegetation change is considered a major factor in reshaping the distribution of 

carbon stocks. The rapid changes in prevailing land use types tends to reduce forest cover thereby reducing the potential 

of carbon capture and storage. The study aims to calculate the amount of carbon stock in dissimilar land use of Ziro Valley 

in Arunachal Pradesh. Altogether 24 (0.1ha each) permanent plots were established under different land use viz; mixed 

forests, pine forests and agricultural land. To study the tree biomass and carbon under selected landuse, non-destructive 

biomass sampling approach was used. A total 102 species were recorded during the sampling. Species such as Pinus 

wallichiana, Castonopsis indica, C. hystrics, Rhododendron hodgsonii, Elaeocarpus rugosus, Quercus myrsinifolia were 

among the most frequent species. The stand density ranges from 440 to 770 stems/ha in the forest area. Species-specific 

volume equations were used to calculate the above ground biomass (AGB). The AGB recorded from the mixed forests 

ranged from 140.55 t/ha to 316.18 t/ha and in pine forests it was recorded 102.04 to 184.46 t/ha. The AGB recorded at 

shrub layer in the mixed forests varied from 4.71 to 7.29 t/ha and it was 5.38 to 13.46 t/ha in pine forests. The total carbon 

calculated for the mixed forests including soil organic carbon (SOC) was 131.35 tonnes /ha to 309.12 t/ha and it was 

recorded 129.66 t/ha to 203.02 t/ha in pine forests. The total soil carbon recorded in the agricultural field ranges from 

11.53 t /ha to 61.45 t /ha. The present study reveals how the conversion of forest in to agriculture land will minimize the 

carbon capture potential of the forest land use. The different satellite data based modelling approach was also applied in 

this study to predict overall carbon stock of the study area. 
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1. Introduction 

 

Terrestrial ecosystems are the storehouse of carbon 

reserved in the form of living biomass, litter, humus and 

soil organic matter, play a significant role in nutrient 

cycling including carbon cycle. Spatially and temporally 

variant carbon sources and sinks were also seen in Indian 

terrestrial ecosystem due to its diverse climate system; 

diversified by various land use distribution and other 

management practices. In terrestrial ecosystems, the 

carbon uptake takes place in both vegetation and soils. Soil 

contains about 75% of the global carbon and plays a vital 

role not only in crop production but also in managing 

carbon concentration in atmosphere (Schlesinger, 1999). 

Forest vegetation is important component of land cover 

and plays important role in carbon dynamics. The diverse 

structural composition of the forests, and other biotic 

disturbances and extractions of the trees contributes 

significantly in carbon cycle thereby shaping Global 

carbon resources (Bhat and Ravindranath, 2011). Land use 

changes tend to immediately bring disturbances in soil and 

ambient environment. The annual carbon fluxes to the 

atmosphere from land cover alterations aids in defining the 

global carbon budget (Le Quere et al., 2015) and offers the 

prospective to land administration in understanding the 

removal of carbon from atmosphere (Houghton et al., 

2015). Arneth et al. (2017) reported historical CO2 

emissions from the terrestrial ecosystem resulted from 

land use changes and regarded to be perhaps larger than 

that assumed. Quantification of carbon stocks is very 

complex and in order to understand the complexity of the 

carbon cycle and its linkages, estimations are done through 

ground truth approach and carbon dynamics simulation 

through geospatial techniques. Remotely sensed data 

coupled with geospatial approaches plays a noteworthy 

role in present scenario in mapping and monitoring of land 

cover in shorter time span as compared to ground based 

approach (Jensen, 1986; Treitz and Rogan, 2004). Remote 

sensing images have revealed high correlation between 

spectral bands and vegetation which is in general the most 

important for estimation of above ground biomass (AGB) 

for large area (Nelson et al., 2000; Foody et al., 2003). The 

above technology is also capable in collecting data for 

areas which cannot be accessed due to undulating 

topography and other site variability. Keeping in mind the 

limited empirical analysis of land use changes in the 

context of major land cover C dynamics in the state of 

Arunachal Pradesh, the proposed objectives was carried 

out to calculate carbon stocks in major land use i.e., mixed 

forests, pine forests and agricultural land in the Ziro valley. 

 

2. Study area 

 

The Ziro valley is situated in Lower Subansiri district of 

Arunachal Pradesh (93º45´35.54´´ to 94º01´01.83´´ E 

longitudes and 27º25´25.36´´ to 27º38´22.8´´ N latitudes) 

having altitudinal range of 1,524 to 2,900 m asl. The 

Lower Subansiri district is bounded by Kurung Kumey and 

Upper Subansiri districts in the North, in the East by West 

Siang and Upper Subansiri districts, and Papum Pare 

district and the state of Assam to the South (Figure 1). The 

Ziro valley is frequently called as the Apatani plateau. The 

geographical coverage of study area is 3,460 km2 of which 

about 33 km2 areas is under agricultural lands and 

remaining area is either under forest cover, plantations or 

settlement  
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Figure 1: Location map of the study area 

 

The area experiences warm subtropical to temperate 

climate. The Ziro valley experiences four seasons in a year 

i.e., cool winter, pre-monsoon, monsoon and post-

monsoon seasons. Least temperature is recorded amid 

December and January and greater temperature amid 

summer in the July and August (Figure 2). The normal 

yearly precipitation of the study area for the year 2017 was 

recorded with low (5.76 mm) to high (496.51 mm) 

precipitation amid the May-July. The relative humidity 

remains high 78.16 % throughout the year, with the 

exception of winters when it slightly goes down (Figure. 

2). The LULC map of the Ziro valley was prepared using 

LANDSAT OLI, 2017 satellite data and classified map is 

presented (Figure 3). The physiography of the study area 

had supported the rich vegetation having broad variety of 

forest resources.  

Figure 2: Climatogram of the study area
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Figure 3: Land use land cover map of the study area 

 

3. Data used and methodology 

 

To measure the biomass, plots of 30m x 30m were sampled 

randomly from selected land cover and land use. The 

number of plots selected for all landuse types were 

primarily depending on the distributions/coverage and the 

variability in the carbon content in account. For the major 

land use, mixed forests, pine forests and agricultural lands 

were selected. The individual trees per ha, basal area and 

biomass (Mg/ha) were computed based on the sampled 

data. The AGB was estimated using volume equation 

(Appendix-I) of Forest Survey of India (FSI, 1996). The 

biomass of the under-storey (diameter less than 10 cm) 

were analysed in the sub plots of 5 m × 5m following 

NRSC-ISRO field manual and herb species were 

calculated using harvest methods (fresh weight basis) in 

sampled plots of 1m x1m within the nested plot of 30 m × 

30 m. It was assumed that the above ground components 

have 55 % of Carbon (Mac Dicken, 1997). Random 

samples of soil from each 30m x 30m plot were collected 

in replicates. The soils were sampled to a depth of 45 cm 

and separated into different layers i.e., 0-15, 15-30 and 30-

45 cm during the soil sample collection. Soil bulk density 

was measured using soil corer method as described by 

Anderson and Ingram (1993). Below ground biomass was 

calculated considering factor 0.29 of the AGB (IPCC 

2005). Soil organic carbon was determined using the 

Walkley and Black (1934) method. The SOC content was 

calculated for bulk density and summed to estimate total 

SOC content. 

 

 

3.1 Remote sensed data 

Remote sensing permits to study the possessions and 

procedures of land uses and their temporal variability at 

different dimensions (Prince and Goward, 1995; Running 

et al., 2000). The Landsat OLI image (5 Dec, 2017; Path 

135, Row 41) of the study area was collected to calculate 

various vegetation indices. The collected initial satellite 

data for each OLI band were radiometrically calibrated to 

top of atmosphere surface reflectance. Further, processing 

of images involved several image processing techniques 

such as geometric correction, mosaicking and extraction of 

study area. Radiometric correction of each band was done 

through ERDAS imagine 9.1 following LANDSAT 8 user 

handbook. After radiometric correction all the images 

were re-projected to Universal Transverse Projection 

system followed by delineation of study area. Land use and 

land cover map was prepared using unsupervised 

classification through ERDAS imagine 9.1. 

 

DN to Radiance Conversion  

Images are processed in units of absolute radiance using 

32-bit floating point calculations. These values are then 

converted to 16-bit integer values in the finished level 1 

product. These values can then be converted to spectral 

radiance using the radiance scaling factors provided in the 

metadata file:  

Lλ = ML*Qcal + AL 

Where: Lλ = Spectral radiance (W/(m2 * sr * μm)), ML = 

Radiance multiplicative scaling factor for the band , AL = 

Radiance additive scaling factor for the band , Qcal = 

Level 1 pixel value in DN. 
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Table 1: Vegetation indices used in current study 

 

Top of Atmosphere Reflectance 

Similar to the conversion to radiance, the 16-bit integer 

values in the level 1 product can also be converted to Top 

of Atmosphere (TOA) reflectance. The following equation 

is used to convert level 1 DN values to TOA reflectance:  

 

ρλ' = Mρ*Qcal + Aρ 

where:  

ρλ' : Top-of-Atmosphere Planetary Spectral 

Reflectance, without correction for solar angle. 

(Unit less)  

Mρ : Reflectance multiplicative     scaling factor 

for the band .  

Aρ : Reflectance additive scaling factor for the 

band  

Qcal l: Level 1 pixel value in DN  

Note that ρλ' is not true TOA Reflectance, because it does 

not contain a correction for the solar elevation angle. This 

correction factor is left out of the level 1 scaling at the 

users' request); some users are content with the scene-

centre solar elevation angle in the metadata, while others 

prefer to calculate their own per-pixel solar elevation angle 

across the entire scene. Once a solar elevation angle is 

chosen, the conversion to true TOA Reflectance is:  

 
𝛒𝛌 = 𝛒𝛌′/𝐬𝐢𝐧(𝛉) 

where:  

ρλ = Top-of-Atmosphere Planetary Reflectance 

(Unitless)  

θ = Solar Elevation Angle (from the metadata, or 

calculated). 

 

Above ground biomass: remote sensing approach 

The current study emphasized three mostly used 

vegetation indices connected with satellite image change 

detection and biomass estimation was used. Vegetation 

indices are the best indicator of greenness of vegetation 

canopy and hence used to predict the above ground 

biomass estimation and prediction (Xue and Su, 2017) 

Almost all vegetation indices derived by the taking ratio of 

Near Infrared band (NIR) and Red band (R). The current 

study comprises indices (Table 1) of the normalized 

difference vegetation index (NDVI), which is the ratio of  

contrasting reflectance between the maximum absorption 

of the red wavelength and maximum reflectance of the 

infrared wavelength (Powel et al., 2010) and its value 

ranged between -1 to 1, the transformed vegetation index 

(TVI), which is the same as NDVI but values are always 

positive as addition of factor of 0.5 to absolute of NDVI 

and its value ranged in 0 to 1, the soil adjusted vegetation 

index (SAVI), which is similar to the NDVI but 

illuminates the soil brightness effect (Richardson and 

Wiegnad, 1977).  

Spectral modeling of carbon stock estimation and 

prediction using satellite derived vegetation indices have 

been performed in the present study. The linear regression 

analysis done between fields based total carbon which was 

calculated by taking carbon observed in different plant 

component (AGB, BGB, herb, shrub and soil carbon) and 

vegetation indices. 

 

4. Results and discussion 

 

The results show the variations in biomass between the 

mixed forests and pine forests. Stand density, basal area 

and biomass showed noteworthy variation between the 

land use types. Altogether, 102 species were recorded from 

the present study area. Species like Pinus wallichiana, 

Castonopsis indica, C. hysterics, Rhododendron 

hodgsonii, Elaeocarpus rugosus, Quercus myrsinifolia 

were among the most frequent species. Based on the study 

it was observed that the basal area (m2 /0.1ha) of the woody 

species ranged from 3.68 to 8.08 in the mixed forests and 

it was 2.60 to 4.45 in the pine forests. The stand density 

ranges from 440 stems/ha to 770 stems/ha in the mixed 

forests and 450 stems/ha to 600 stems/ha in the pine 

forests.  

 

The volume equations were fitted to the data using 

diameter at breast height (dbh), height (H) and the 

combined variable dbh2H as explanatory variables for the 

woody species. Species-specific biomass estimation was 

done for each plot. Biomass per plot (0.1 ha) was estimated 

by summing up the species present in the respective plots. 

The AGB ranges from 140.55 t/ha to 316.18 t/ha in the 

mixed forests whereas it varied from 102.04 to 184.46 t/ha 

in the pine forests. The findings of the present study are in 

conformity with the values reported of 7.25 t/ha to 287.047 

t/ha in different vegetation types (Devagiri et al., 2013), 

6.39 t/ha to 215.57 t/ha in tropical forest ecosystems 

(Khangar and Hirandhede, 2016). Evaluation of total AGB 

in the different land use types showed that the total AGB 

was higher in mixed forests as compared to pine forests 

and agricultural land. The biomass (t /ha) of the under-

storey shrubs ranged from 6.07 to 9.40 whereas for herbs 

it ranged from 0.46 to 0.74 in the mixed forests on the other 

hand for plantation it was recorded 6.94-17.36 under-

storey shrubs and 0.17-0.27 for herbs. The field-based 

findings showed a positive relation (R2=0.94) between the 

basal area and woody species biomass. The overall 

allocation of SOC also varied amongst the three landuse 

types. The highest proportion of SOC content was 

deposited in the surface layer than the sub surface layer. 

The average total SOC content in the mixed forests was 

29.63 t/ha, 50.27 t/ha in the pine forests and 31.10 t/ha in 

Vegetation 

Indices 

Expression Author 

 

NDVI 
 

NDVI =
NIR − R

NIR + R
 

 

Rouse 

et al. 

(1974) 

TVI TVI = √
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
+ 0.5 

Deering 

et al. 

(1975) 

SAVI 
SAVI =

NIR − R

NIR + R + L
(1

+ L) 

Huete 

(1988) 
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the agricultural lands. The carbon stock sum of AGBC and 

SOC varied significantly over land use types. It ranges 

from 131.35 t/ha to 309.12 t/ha in mixed forests followed 

by 129.66 t/ha to 203.02 t/ha in pine forests and 11.53 t/ha 

to 61.45 t/ha in agricultural lands. 

 

4.1 Spectral modelling of carbon stock 
Satellite based biomass estimation of the study area was 

done through vegetation indices. NDVI values range 

between 0.08 to 0.42 among the sampled plots, 0.92 to 1.26 

for the TVI, 0.12 to 0.62 for SAVI in the present study. 

Das et al. (2017) had reported NDVI value of 0.26 and 

SAVI value of 0.70 from different land use sectors of 

Arunachal Pradesh. To apprehend the relationship linear 

regression analysis was carried out between AGB and 

satellite derived different vegetation indices. The 

coefficient (R2) of regression model between biomass and 

different vegetation indices were presented in Table 2 and 

the spatial variability map of selected land use types of the 

study area is given in figure 4. 

 

Table 2: Coefficient for R2 for biomass and different 

vegetation indices 

 

Vegetation 

Indices 

Equation R2 

NDVI Y = 685.57x – 23.262 0.75 

TVI Y = 432.89x – 282.82 

0.41 

SAVI Y = 460.81x – 28.433 0.79 

*Where x denotes the NDVI and Y denotes AGB 

 

Figure 4: (a) NDVI map, (b) TVI map and (c) SAVI map of study area  
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The coefficient (R2) value observed is 0.75 for NDVI, 0.41 

for TVI and 0.79 for SAVI. The R2 value observed for 

three vegetation indices was compared with values 

reported by different researchers around the world. Foody 

et al. (2003) had reported lower R2 value of 0.082, 0.009 

and 0.099, respectively from the Thailand, Brazil and 

Malaysia using Landsat TM satellite data than the values 

observed in the current studies. The R2 value was also 

reported to be lower (R2= 0.046) by Zhou (2014) from 

South eastern Bangladesh using Landsat ETM+ bands.  

Rahman et al. (2008) had also reported the lower R2 

(0.138) value for NDVI. The R2 value (0.51) reported by 

Mynard et al. (2007) found to be higher than the values of 

current study. Redowan et al. (2015) had also reported 

higher R2 (0.768) value than current research. The R2 value 

for TVI has very low relationship between biomass and 

TVI. The R2 (0.173) value for TVI was reported by 

Rahman et al. (2008) from South eastern Bangladesh using 

Landsat ETM+ bands were lower than present observation. 

The higher R2 value (0.639) was reported by Redowan et 

al. (2015) for Kahdimanagr national park, Bangladesh. 

The R2 value ranged between 0.46 and 0.86 for south 

western part of Karnataka (Devagiri et al., 2013). The 

R2value computed for SAVI is higher than the R2value 

0.52 reported by Zhou (2014). Ullah et al. (2012) had also 

studied the relationship between green biomass and SAVI 

and reported R2 value (0.54) which is lower than the values 

observed in current study. Maynard et al. (2015) modelled 

the AGB using vegetation indices and reported the R2 

value of 0.51 for SAVI while in other study it was reported 

to be 0.029 by Rahman et al. (2008). 

Though NDVI is widely used vegetation indices for 

biomass estimation but it showed low R2 values in current 

study. NDVI has the draw backs of light scattering due to 

aerosols present in atmosphere which affects the biomass 

estimation (Ben‐Ze'ev, et al., 2006). There is no significant 

difference in NDVI and TVI as both indices have same 

drawbacks. Also these two indices only use two bands 

(NIR and Red). In TVI, the values always show positive 

values and sometimes it goes beyond 1. SAVI perform 

better than former two indices, as it considers the soil 

brightness effect and correction factor was added to this 

which minimizes the error which was observed in NDVI. 

4.1.1 Biomass and carbon stock prediction 

The current study revealed that soil adjusted vegetation 

index (SAVI) have better relationship with the carbon 

stock. The best fit regression model Y = 460.81x – 28.433 

(R² = 0.79) was used to predict carbon stock per sample 

plot (Figure 4). The predicted carbon stock was summed 

up and converted into stock per hectare. The predicted 

carbon stock for the study area was 118.79 t ha-1. However, 

the carbon stock predicted for mixed forest was 177.43 t 

ha-1, 169.23t ha-1 for Pine forest and it was 31.10 t ha-1 for 

paddy field. Devagiri et al. (2013) reported carbon stock of 

3 Mt (mean carbon density of 33 t ha-1) from Hassan 

district of Karnataka. Bhat et al. (2003) reported total 

carbon density (TCD) from 131.86 Mgha−1 to 460.89 

Mgha−1, which indicates that the carbon density of forests 

reduces with increasing elevation in forest of Uttar 

Kannad in Western Ghats (Figure 5). 

  

 
Figure 5: Predicted carbon stock for the study area 
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5. Conclusions 

 

In the present study, the field based findings of the total 

carbon stock in the mixed forests was estimated 195.81 

t/ha, it was estimated 162.26 t/ha in the pine forests and it 

was estimated 31.10 t/ha in agricultural lands whereas, the 

remote sensing based findings predicted carbon stock of 

the overall land use types of the study area to be 118.79 

t/ha which is quite comparable with the field based 

findings.The difference in the biomass estimations 

between the observed values and predicted values might 

be due to the changes in the crown density and 

phenological conditions of vegetation types existing in the 

study area.This type of studies will be more successful if 

they are integrated with socioeconomic, ecological and 

political objectives for biodiversity conservation and 

biomass based livelihood enhancement opportunities to 

use forests as a part of CO2 emission control strategy. 

 

Dedication 

 

This paper is dedicated to our beloved teacher Late Prof. 

R.S. Tripathi. 
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Appendix-I: Species-specific equation used in present 

study (Source: FSI 1996) 

Tree species Volume eq. used 

Abies densa 

V=0.10744-

2.09529*D+12.62008*D^2-

1.61065*D^3 

Acer accuminatum SQRTV=-0.162945+3.109717*D 

Acer sp. SQRTV=-0.162945+3.109717*D 

Acer caudatum SQRTV=-0.162945+3.109717*D 

Acer hookeri SQRTV=-0.162945+3.109717*D 

Alnus sp. 

V=0.01115-

0.11716*D+7.11672*D^2-

4.54544*D^3 

Alnus nepalenis 

V=0.01115-

0.11716*D+7.11672*D^2-

4.54544*D^3 

Alnus nitida 

V=0.01115-

0.11716*D+7.11672*D^2-

4.54544*D^3 

Altingia excelsa 

V=0.09164-

1.21122*D+7.76693*D^2+2.17361*

D^3 

Betula alnoides 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Bombax ceiba 

V=-

0.10513+0.28329*D+6.11575*D^2 

Castanopsis  sp. 

V=0.05331-

0.87098*D+6.52533*D^2+1.74231*

D^3 

Chukrasia 

tabularis V=-0.07559+9.23051*D^2 

Cinnamomum 

bejolghota 

V=-0.13819+2.28497*D-

4.27569*D^2+11.3422*D^3 

Cinnamomum 

camphora 

V=-0.13819+2.28497*D-

4.27569*D^2+11.3422*D^3 

Cinnamomum 

tamala 

V=0.1097-0.88668*D+6.097*D^2-

1.62672*D^3 

Cinnamomun 

cecidephne 

V=-0.13819+2.28497*D-

4.27569*D^2+11.3422*D^3 

Citrus sinensis 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Cyathea sp. 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Cyperus torulosa 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Debregeasia 

longifolia 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Duabanga 

grandiflora SQRTV=-0.05931+2.63098*D 

Elaeocarpus 

rugosus 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Elaeocarpus sp. 

SQRTV=0.43483+5.72522*D-

2.59907*SQRTD 

Exbuclandia 

populnea 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Ficus sp. 

SQRTV=0.03629+3.95389*D-

0.84421*SQRTD 

Ficus auriculata 

SQRTV=0.03629+3.95389*D-

0.84421*SQRTD 

Garcinia sp. 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Gynocardia 

odorata  

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Irvingia 

gabonensis 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Ligustrum 

robustum 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Litchi sineisis 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Lithocarpus sp. 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Litsea monopetala 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Maesa sp. 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Magnolia 

campbelli 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Magnolia sp. 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Magnolia 

hodgsonii 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Mahonia 

nepalensis 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Mallotus sp. 

V=0.14749-

2.87503*D+19.61977*D^2-

19.11630*D^3 

Mangifera 

sylvatica 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Michelia champaca  

V=-

0.11391+1.06784*D+5.36178*D^2 

269



Journal of Geomatics  Vol. 13, No. 2, October 2019 

 

Michelia doltsopa 

V=-

0.11391+1.06784*D+5.36178*D^2 

Michelia/magnolia 

oblonga 

V=-

0.11391+1.06784*D+5.36178*D^2 

Moras alba 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Myrica esculenta 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Neolitsea zeylanica 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Neolitsea 

pulcherima 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Persea sp. 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Phoebe pallida V=-0.0432+0.3622*D^2H 

Phoebe lanceolata V=-0.0432+0.3622*D^2H 

Phoenix sp. 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Pinus wallichiana 

V=0.22736-

0.027394*D3+0.0012413*D^2(dia in 

cm) 

Pinus roxburgii 

V=0.22736-

0.027394*D3+0.0012413*D^2(dia in 

cm) 

Prunus sp. 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Prunus nepalensis 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Prunus persica 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Pyrus sp. 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Quercus dealbata V=-0.04378+6.2342*D^2 

Quercus glauca V=-0.04378+6.2342*D^2 

Quercus 

myrsinifolia V=-0.04378+6.2342*D^2 

Quercus lamellosa V=-0.04378+6.2342*D^2 

Quercus 

semiserrata V=-0.04378+6.2342*D^2 

 Rhododendron 

hodgsonii V=-0.08934+0.7073*D+2.13941*D^2 

Rhododendron 

grande V=-0.08934+0.7073*D+2.13941*D^2 

Rhododendron 

dalhousiae V=-0.08934+0.7073*D+2.13941*D^2 

Rhododendron 

coxianum V=-0.08934+0.7073*D+2.13941*D^2 

Rhododendron 

subansirians V=-0.08934+0.7073*D+2.13941*D^2 

Rhododendron 

boothii V=-0.08934+0.7073*D+2.13941*D^2 

Rhododendron 

falconeri V=-0.08934+0.7073*D+2.13941*D^2 

Rhododendron 

kendrickii V=-0.08934+0.7073*D+2.13941*D^2 

Salvadora persica 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Sapium buccatum 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Saurauia 

nepalensis 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Schima sp. 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Schima wallichii 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Symplocos theifolia 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Taxus wallichiana 

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Toona ciliata 

V=0.21869-

2.04074*D+10.41713*D^2+1.85232*

D^3 

Trema orientalis  

V=0.15958-

1.57976*D+8.25014*D^2-

0.48518*D^3 

Tsuga dumosa SQRTV=-0.09154+2.37257*D 
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