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Abstract: Blind hyperspectral unmixing basically consists of three sub problems. First is Subspace identification that is 

finding the number of pure endmembers present. Second is endmember extraction and third is abundance estimation. 

There are many approaches for endmember extraction and abundance estimation in literature. But many approaches 

require prior information for the number of endmembers. In this paper, new approach based on eigenvalues of the 

hyperspectral image for subspace identification is proposed, which is best suitable for real-time application like wild land 

fire tracking, biological threat detection and monitoring of oil spills. We have compared our results with other state-of-

art algorithms on the real and synthetic dataset which shows the effectiveness of the proposed work. 
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1. Introduction 

 

Hyperspectral devices or Imaging spectrometers captures 

tens to hundreds of narrow spectral bands of the scene 

from optical wavelength bands approximately at the same 

time. This technology represents the succeeding era in the 

spectral dimension of the progress of multispectral 

imaging sensors. Hyperspectral sensors can be applied to 

all major areas of earth and planetary science including 

land use (Kalluri et al., 2010), water characteristics 

(Mishra et al., 2017) and atmospheric characterization 

(Elwell et al., 2006) due to high spectral resolution. Land 

applications include all types of vegetation studies, soil 

science, geology, and hydrology (Chang, 2003). 

Hyperspectral sensors can be used in river, ocean, and lake 

for water quality, biochemical studies, and bathymetry 

analysis. Various parameter measurement, various 

analysis and characteristics of the atmosphere can be 

studied using hyperspectral sensors. 

 

The scene depicted by a single pixel usually covers more 

than one different endmember or material due to multiple 

scattering, intimate mixing, and low spatial resolution. The 

spectral signature of different substances/objects is 

recorded into one mixed spectral response. The pixels that 

are composed of more than one spectrally distinct material 

are called mixed pixels. Depending on the spectral and 

spatial resolution of the hyperspectral sensor under the 

study, the mixed pixel may contain either different land-

use or land cover types of dissimilar endmembers. Mixing 

can be linear or non-linear depending on how endmembers 

are related to each other in a single pixel. Decomposition 

of the mixed pixel is to extract subpixel level information 

is called spectral unmixing (Bioucas-Dias et al., 2012), as 

shown in figure 1. Automatic spectral unmixing chain 

consists of three stages. First is subspace identification 

which finds the number of pure spectral signatures present 

in the image. Second is endmember extraction which is 

extracting pure spectral signatures from the image itself. 

The final and third stage is abundance estimation to 

quantify various materials in a scene. Subspace 

identification is a very crucial step in unmixing chain as it 

provides initial information to subsequent stages. Real-

time applications of hyperspectral image processing 

applications require fast approaches. There exist many 

approaches to hyperspectral subspace identification but all 

of them requires high processing time which is not suitable 

for real-time processing.  

 

There are many popular subspace identification methods 

Principal Component Analysis (PCA), Singular Value 

Decomposition (SVD), Hyperspectral Subspace 

Identification by minimum error (Hysime), Harsanyi–

Farrand–Chang (HFC). PCA (Jolliffe, 2011) is one of the 

statistical methods commonly used in signal and image 

processing for dimensionality reduction and decorrelation. 

PCA is a factor analysis approach with the consideration 

of the total variance in the data to convert the original 

variables into a lesser set of linear mixtures. Subspace for 

the hyperspectral image is calculated based on variances 

contained by principal components. SVD (Lange, 2010) 

finds singular values unlike principal components in PCA. 

But the method of finding subspace of SVD is same as in 

PCA. The only main difference is the principal component 

and singular values. HFC (Chang and Du, 2004) method is 

eigenvalue thresholding method using Neyman–Pearson 

detection to resolve subspace identification, which models 

the dimensionality estimation as a binary composite 

hypothesis testing problem and the subspace 

approximation error can be measured by ROC analysis. 

Hysime (Bioucas-Dias and Nascimento, 2008) uses the 

least mean squared error-based method to gather the signal 

subspace in hyperspectral images.  

 

In this paper, we propose a new approach for subspace 

identification in the hyperspectral unmixing chain. The 

main advantage of our approach is fewer computations 

which is best suitable for real-time applications. 

Contributions from this paper are: 

 We have developed new TE (Thresholding 

Eigenvalues) for subspace identification. 

 Timing analysis for the proposed approach and other 

state-of-art approaches. 
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Figure 1: Automatic spectral unmixing chain 

 

2. TE (Thresholding Eigenvalues)  

 

Hyperspectral images are basically 3D-cube. Two 

dimensions are spatial and one dimension is spectral. To 

compute the correlation matrix easily, the two-

dimensional image is required with one spatial and one 

spectral dimension.  Y is the two-dimensional version of 

original three-dimensional hyperspectral image X. Y is 

having a size of M× B, where M is a number of pixels and 

B is the number of bands.  

 

Correlation is a very basic operation in signal processing 

community to find similarity between two signals. Here, R 

is correlation matrix of Y, which represents bands 

similarity. Eigenvalues are invented with the purpose of 

finding the principal axes of a rigid body. As Eigenvalue 

represent principal axes, we can assume eigenvalues as the 

prime component. Higher eigenvalue means more basic 

component. If we find few eigenvalues, which represent 

whole data then that few numbers represent hyperspectral 

subspace dimension. E is eigenvalue set of correlation 

matrix R. Es is descending sorting of vector E. Es is 

calculated to find first major components which have more 

impact. L is normalized values of Es. Normalization is 

necessary to deal with a high dynamic range of 

eigenvalues.  

 

The algorithm requires two variables for computation. One 

is two-dimensional hyperspectral image and second is the 

variance that needs to be preserved from eigenvalues. Var 

is a variable, which represents variance required. 

(Var/100) gives a value between 0 and 1. Variable Var 

value should be between 0 and 1 to compare it with 

normalized value of eigenvalues L. TE approach finds a 

value of N such that first N eigenvalues from L give 

variance greater than or equal to (Var/100). N is 

hyperspectral subspace dimension which represents the 

number of pure spectral signatures present in the image.  

 

This TE approach requires few computations only to find 

N. The advantage of fewer computation in TE approach is 

very useful in real-time hyperspectral unmixing. Figure 2 

shows the flowchart of the TE algorithm. 

 

 

 

 

 

3. Results 

 

We have performed two types of analysis on both real and 

synthetic dataset. First is timing analysis and second is 

subspace analysis (Figure 3).  

 

 

Figure 2: Flowchart of TE algorithm 
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Figure 3: Timing Analysis for synthetic images 

 

 

Cuprite image as shown in figure 4 is used as real dataset 

which can be downloaded from URL: 
https://sites.google.com/site/feiyunzhuhomepage/datasets

-ground-truths. Cuprite image was taken by AVIRIS 

instrument which is an optical instrument that delivers 

images of the spectral radiance from 400 to 2500 nm 

wavelength range with overall 224 contiguous spectral 

channels. 

 

We have used synthetic data generated from Hyperspectral 

Imagery Synthesis (EIAs) toolbox (Computational   

Intelligence   Group, 2019). All these synthetic images are 

shown in figure 5 have been generated using 5 selected 

materials (asphalt, brick, fiberglass, Sheetmetal, vinyl-

plastic from the USGS spectral library (Clark et al., 2007).  

 

 
Figure 4: Cuprite image 
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Figure 5: Synthetic images 

 

 

 

Each image is of 128x128x431. Five synthetic images 

(Matern, Exponential, Spheric, Rational, and Legendre) as 

shown in figure 5 are generated using different modelling 

equations available in the toolbox (Computational 

Intelligence Group, 2019).      

  

3.1. Timing analysis 

Processing time is very important for real-time 

applications. Some applications of hyperspectral images 

require less computation time. In this experiment, we have 

depicted processing time by each algorithm and compared 

with our approach as shown in figures 3 and 6. Processing 
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time for each algorithm on each synthetic image is shown 

in figure 3. It can be seen from figure 3 that processing 

time is very less by proposed method and HFC as compare 

to other algorithms. It can be also observed from figure 6 

that proposed method and HFC requires less time compare 

to other algorithms.  

 

 
Figure 6: Spectral signatures used in the synthetic 

image 

 

3.2. Subspace analysis 

Subspace is also as important as timing in real time 

hyperspectral unmixing chain. Subspace provides the 

number of spectrally distinct signatures. Subspace analysis 

observes the number of pure signatures for the 

unsupervised spectral unmixing chain. Figures 7 and 8 

show the subspace analysis experiment results for 

synthetic and real image respectively. As synthetic images 

are generated using the toolbox, we know the subspace 

dimensions. For our synthetic dataset, we have used five 

distinct signatures. So, reference data for all synthetic 

images is figure 5. We have compared subspace 

dimensions for our proposed approach and other 

approaches. All approaches except HFC gives perfect 

subspace dimensions. Reference data for cuprite image is 

14 as mentioned in paper (Zhu et al., 2014).  

 

We have compared subspace dimensions in figure 8 for 

cuprite image. It can be seen that HFC and our proposed 

algorithm gives the same result as GT (Figure 9). 

 

 

Figure 7: Subspace analysis for synthetic image 

Figure 6: Timing analysis for real image  

 

 
Figure 7: Subspace analysis for real image  
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4. Conclusions 

 

In this paper, a new Thresholding Eigenvalues based to 

identify approach is proposed the subspace dimension of 

the hyperspectral image. The simulation results of the 

timing analysis and subspace analysis of proposed 

approach was computed form both synthetic and real 

dataset. TE approach computes subspace dimensions 

accurately and comparatively in less time. TE approach 

can be best suitable for real-time applications. 
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