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Abstract: Particulate Organic Carbon (POC) plays a vital role in the ocean carbon cycle. POC is responsible for large 

fluxes of carbon and is linked to many important ocean biogeochemical processes. Nowadays, improved ocean colour 

sensor provides better understanding of the Sea Surface Temperature (SST), chlorophyll-a and POC distribution in the 

oceans with good spatial resolution. Better retrieval of POC from satellite data is envisaged to improve our ability to 

study the ocean biogeochemical cycle. In this context, the present study was carried out to understand the spatial and 

temporal changes of POC in the year 2017. Validation of  VIIRS derived SST, chlorophyll-a and POC with in-situ 

measurements showed the better correlation of SST (R2 = 0.77, Mean Normalized Bias (MNB) = ±0.004, Root Mean 

Square Error (RMSE) = ±0.23 and Standard Error of Estimate (SEE) = ±0.42), chlorophyll-a (R2 =0.74, MNB = ±0.035, 

RMSE = ±0.13, and SEE =±0.23) and POC (R2 =0.73, MNB = ±0.011, RMSE =±89.42, and SEE =±29.53) in the 

southwest Bay of Bengal respectively. The basin average of monthly composited VIIRS data showed the maximum 

chlorophyll-a (0.54 μgl-1) and POC (108.72 mgCm-3) during monsoon in the month of November and minimum 

chlorophyll-a (0.25 μgl-1) and POC (62.60 mgCm-3) observed during summer in the month of May. In contrast, 

monthly composite SST showed the minimum basin average (27.77°C) during monsoon in the month of December and 

the maximum (30.76°C) during summer in the month of May due to increased incoming solar radiation with cloud free 

sky compare to monsoon which experienced dense cloud cover with decreased light intensity at the surface of the 

ocean. The multiple regression analysis between POC, SST and chlorophyll-a demonstrated the better agreement 

between the variable with R2 of 0.66 POC = 195.040 – 5.310 (SST) + 110.059(chl a) and suggested the strong positive 

influence of chlorophyll-a on the distribution of POC while the SST acted in a reverse manner in the southwest Bay of 

Bengal. The observed positive relationship between chlorophyll-a and POC in multiple linear regression analysis 

suggesting the influence of monsoon inputs and primary production on the distribution of POC.  However, the negative 

relationship between SST and POC in MLR depicted that the increased SST hindered the primary production rate due to 

the strong stratification at the surface layers which results the unavailability of nutrients at the surface waters. 
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1. Introduction 

 

The exchange of carbon dioxide (CO2) between the 

atmosphere and ocean is a critical component of the 

global carbon cycle and climate system (Sabine et al., 

2004; Gruber et al., 2009).  The ocean plays an important 

role in the global carbon cycle as it is a sink for about half 

of the anthropogenic carbon production (Sabine et al., 

2004). An improved knowledge of the Particulate 

Organic Carbon (POC) reservoir is of interest to research 

on ocean biogeochemical cycles, ocean ecosystems, and 

climate studies relating to the ocean carbon cycle 

(Houghton, 2007). 

 

POC plays a vital role in the ocean carbon cycle. The 

POC is responsible for large fluxes and is linked to many 

important ocean biogeochemical processes. The satellite 

ocean-color signal is influenced by particle composition, 

size and concentration and provides a way to observe 

variability in the POC pool at a range of temporal and 

spatial scales. There are many studies on the distribution 

of POC in the Pacific and Atlantic Ocean (Romankevich, 

1984; Gordon and Cranford 1985; Yoro et al., 1997). 

However, little information is available on the 

distribution of POC (Bhosle et al., 1988) in the Indian 

Ocean in general, and in the Bay of Bengal in particular 

(Radhakrishna et al., 1978; Bhattathiri et al., 1980; 

Nandakumar et al., 1987). 

 

Sea Surface Temperature (SST) is a fundamental variable 

at the ocean-atmosphere interface (Donlon et al., 2009). It 

affects the complex interactions between atmosphere and 

ocean at a variety of scales. Thus, SST datasets with high 

quality are needed for many applications, such as 

operational monitoring, numerical weather, and ocean 

forecasting, climate change research, and so on (Tu et al., 

2015). SST data are often used in combination with 

chlorophyll-a to relate bloom events to mixed layer 

depths (Villareal et al., 2012) or upwelling zones  

(Thomas et al., 2012; Shi and Wang, 2007). Moreover, 

they are an important factor in marine carbon cycling and 

energy fluxes (Hedges, 2002; Hoikkala et al., 2015; 

Kuliński et al., 2014).  

 

In many coastal regions, the resuspension of sediments is 

also an important source of POC. Bottom POC 

concentration in a shallow sea can rise up to three times 

under the influence of resuspension when the wind speed 

increases (Hung et al., 2000). Furthermore, physical 

mechanisms constitute important control factors for POC 

distribution. For example, convective mixing induced by 

decreasing temperature is the main reason for POC to 
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exhibit a uniform vertical profile in the water column 

(Zhao et al., 2003). Most importantly, evidence of sinking 

particles carrying POC out of the euphotic zone, a 

potential strategy to sequester CO2 from the atmosphere, 

is still poorly understood. Bay of Bengal receives large 

influx of fresh water that decreases the sea-surface 

salinity. Moreover, the presence of weak winds (<10 m s 

-1) and warm sea-surface temperature (>28°C) results in 

strong stratification of the surface of the ocean and hence 

shallowing the mixed layer. SST and sea 

surface salinity (SSS) are directly related to surface heat 

and freshwaterfluxes. More importantly, these surface 

values are linked to atmospheric circulation, and their 

inter-annual variability, could have implications for 

larger-scale climate. As a result, low or no nutrients are 

injected into the surface waters thereby, influencing 

biological production (Kumar et al., 2007). However, the 

efficiency of the biological carbon pump to sequester 

atmospheric CO2 and export particulate organic carbon 

from the surface is not well known. Nowadays, the 

availability of satellite derived ocean color products such 

as chlorophyll-a and POC has been the focus of numerous 

studies in the ocean observations at a large extent. 

 

Although, the spatial distribution and seasonality of POC 

have been described in several reports (Gustafsson et al., 

2014; Hoikkala et al., 2015; Kulinski et al., 2011; 

Maciejewska and Pempkowiak, 2014), only few studies 

are available in the validation of POC (Haeentjens et al., 

2017; Szymczycha et al., 2017; Swirgon and Stamska, 

2015). Similar such works are scanty in the Bay of 

Bengal that pertained on the POC distribution of and 

spatio-temporal variability. Hence our present study 

aimed to assess the spatial and temporal variability of 

POC and its interrelationship with SST and chlorophyll-a 

in the coastal waters of the southwest Bay of Bengal. 

 

2. Materials and Methods 

 

The Bay of Bengal is north-eastern part of the Indian 

Ocean, extended between the latitude 5°N to 30°N and 

longitude 80°E to 105°E (Figure 1). This is a semi 

enclosed basin alike the Arabian Sea, bounded by India 

on the west, by Bangladesh, Myanmar, and part of India 

on the north, and Burma and Malaysia in the east. The 

present study was carried out along the Tamilnadu coast 

falling in the southwest Bay of Bengal viz., transect of 

our study area are in Chennai, Cuddalore, Parangipettai 

and Nagapattinam, which are major prominent coastal 

stations in the east coast of Bay of Bengal. 

 

1.1. In-situ measurements  

In-situ SST,chlorophyll-a and POC were measured at five 

fixed sampling stations along the southwest coast of Bay 

of Bengal from 2nd February to 4th February 2018. On 

2nd February Nagapattinam station was covered, 3rd 

February Parangipettai and Cuddalore stations were 

covered and 4th February Chennai station was covered. 

The stations were fixed with the help of Global 

Positioning System (GPS) at 5 km from shore and at an 

interval of 1 km between sampling point.Water samples 

were collected at the surface waters by using a Niskin 

water sampler. Sea Surface Temperature (SST) was 

measured using a digital multisensor of ±0.01°C accuracy 

(Merck Millipore-Multi 3420). The SST measurements 

were carried out using handeld multisensor temperature 

probe in the surface waters and the data was transmitted 

through USB interface. Chlorophyll-a concentration was 

measured by following the method of UNESCO (1994) 

using UV-VIS spectrophotometer (Shimadzu- UV 2450), 

calibrated previously with standard chlorophyll-a (Sigma 

– C6144), using 90% acetone. POC concentrations were 

determined by combustion of sample filters through pre 

treated 47mm Whatman GF/F filters and samples were 

treated with chromic acid fumes to remove the inorganic 

carbon and estimation were done by following the 

standard methods described by Parsons et al. (1984). 

 

 
Figure 1: Map showing the study area 

 

 2.2. Remote sensing observations 

Satellite measurements greatly increases the spatial and 

temporal extent of observations available for 

characterizing SST, Chlorophyll-a and POC dynamics 

and their relations to various dominant physical forcings 

to the surface ocean  specifically POC from satellite 

images to understand the dynamics and cycling of carbon 

in the ocean.The Suomi National Polar-orbiting 

Partnership (SNPP) satellite Visible Infrared Imaging 

Radiometer Suite (VIIRS) derived 1 km SST, 

chlorophyll-a and POC image were acquired from the 

Ocean colour web for 3rd February 2018.The satellite 

derived images were processed by using SeaDAS 7.4 ver. 

software for interpretation and analysis. Validation of 

satellite derived SST, chlorophyll-a and POC products 

were done by using concurrent in-situ measured SST, 

chlorophyll-a and POC data in the southwest Bay of 

Bengal. 

 

2.3.Statistical analysis 

The evaluation process involved comparing satellite 

derived values with the field measurements. Statistical 

fitting was applied to these data using SigmaPlot 

(Ver.12.0) statistical software. Mean Normalized Bias 
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(MNB), Root Mean Square Error (RMSE) and  Standard 

Error of the Estimate (SEE) were analyzed to test the 

performance between insitu and satellite. Standard error 

of the estimate (SEE) has been used to provide a 

numerical index in between satellite and insitu data 

performance and graphical criteria such as regression 

plots provide indication of the linear behavior of the 

fit.Mean normalized bias is a measure of the over or 

underestimation of the true values. Root mean square 

error provides a good measure of data scatter for 

normally distributed variables and gives useful 

information of the accuracy between satellite and in-situ 

data. These errors are defined as follows, 

𝑆𝐸𝐸 =  √
∑(𝑋−𝑋1)2

𝑁
------ (1) 

𝑅𝑀𝑆𝐸 =
1

𝑁
∑ √(𝑋 − 𝑋1)2 − − − (2)  

 

𝑀𝑁𝐵 =
1

𝑁
∑

(𝑋−𝑋1)

𝑋1  -----(3) 

Where X = insitu data, X1 = satellite data and N = 

number of points. 

Multiple Linear Regression (MLR), is the simplest and 

most analogues to the bivariate techniques commonly 

used and thus provide the most readily interpretable 

results. It was carried out to calculate the values of a 

dependent variable, given a set of predicted variables 

which was used to determine the extent to how the 

variables contributed to the POC concentration. 

 

3. Results  and Discussion 

 

The satellite images of SNPP-VIIRS derived SST, 

chlorophyll-a and POC were retrieved on  3rd February 

2018 covering the southwest Bay of Bengal (Figure 2-4). 

 

3.1. Validation of VIIRS derived SST 

VIIRS derived SST data was validated with in-situ data 

to evaluate the performance of VIIRS and exhibited the 

good agreement with significant correlation co-efficient 

of R2 = 0.77 with Standard Error of Estimation (SEE) of 

±0.42, Mean Normalized Bias (MNB) of 0.004 and Root 

Mean Square Error (RMSE) of ±0.23 (Figure 2). The data 

points fall outside of the 95% confidence band suggests 

that the satellite derived values were higher or lower than 

they should be in natural waters. The relationship 

between the in-situ and VIIRS derived SST showed a 

highly significant relationship. Tu et al., (2015) 

investigated comparison between the VIIRS SST and in-

situ SST, based on the overall comparison result showed 

that all types of in situ SST have very high correlation 

with the VIIRS SST. Similarly, our study also showed 

good correlation between in situ SST and VIIRS SST. 

 

3.2. Validation of VIIRS derived chlorophyll-a 

VIIRS derived chlorophyll-a data was validated with in-

situ data to evaluate the performance of VIIRS and 

exhibited the good agreement with significant correlation 

co-efficient (R2) of 0.74 with SEE of ±0.24, MNB of 

0.038 and RMSE of ±0.13 (Figure 3). The relationship 

between in-situ and VIIRS derived chlorophyll-a showed 

very less significant relationship due to uncertainties. 

VIIRS shows higher spatial coverage and detection 

accuracy than  MODIS, after coefficient improvement. 

VIIRS is also able to predict chlorophyll-a with 53% 

accuracy (Zeng et al., 2016). Validation of the VIIRS 

ocean color products by inter-comparison with in situ 

observations, confirming good matchup of the water, 

leaving radiance between ship and VIIRS data (Arnone et 

al., 2012). 

 

3.3 Validation of VIIRS derived POC  

Validation of VIIRS derived POC showed good 

agreement with insitu estimations of POC (R2=0.73, SEE 

= ±29.50, MNB = ±0.01 and RMSE = ±89.42). Recently 

(Everskings et al., 2017) five different POC empirical 

algorithms were validated with in situ data. Among the 

five algorithms, Stramski et al., (2008) found the better 

algorithm for the better retrieval of POC. It is therefore 

important to continue the validation work to improve the 

reliability of in-situ and satellite POC determinations. 

Haeentjens et al., (2017) validated the float POC with 

VIIRS and MODIS derived POC. Float-based POC 

estimates agree well with NASA’s algorithm, but also 

exhibit a large spread (relativelylow prediction 

capability) in matchups. The uncertainty of the POC for 

both sensors(MODIS R2 = 0.44 and VIIRS R2 =0.40) is 

very close to the one from the algorithm used (Stramski 

et al., 2008) which has Root mean square differences 

(RMSD) =21.3 mg m-3, Root mean square relative 

deviation (RMSRD) =21.7%, R2=0.87, for N=53 

suggesting the POC derived from VIIRS agrees well with 

the float POC within uncertainty specified

 
Figure 2: a) SNPP-VIIRS derived (3rd February 2018) image of SST; b) Regression plot of in-situ SST Vs VIIRS 

derived SST 
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Figure 3: a) SNPP-VIIRS derived (3rd February 2018) image of chlorophyll-a; b) Regression plot of in-situ 

chlorophyll-a Vs VIIRS derived Chlorophyll-a 

 
Figure 4: a)  SNPP-VIIRS derived (3rd  February 2018) image of POC; b) Regression plot of in-situ POC Vs 

VIIRS derived POC 

 

3.4. Seasonal variability of SST 

Seasonal variability of SST in the southwest Bay of 

Bengal was studied from the monthly composite images 

of VIIRS derived SST (Figure 5). The SST concentration 

has been varied from 26.7 to 31.1°C in the southwest Bay 

of Bengal and registered its highest concentration 

(31.1°C) at Nagapattinam during the Summer season and 

the lowest concentration observed during the Post 

monsoon (26.7°C) at Nagapattinam coastal waters.  

 

The basin scale averages of SST in the southwest Bay of 

Bengal clearly indicate the seasonal pattern of SST with 

the maximum SST in the month of May (30.76⁰C) 

(Figure 6) during summer season. The minimum SST 

concentration was observed during December (27.06⁰C) 

month of monsoon followed by January (27.08⁰C), 

February (27.25⁰C) during the postmonsoon season.   As 

SST increases in summer there is a concurrent thermal 

stratification of the water column in the vertical 

dimension and the thermocline (the strongest gradient of 

temperature) progressively deepens. In contradictory, 

SST decreases during monsoon and early postmonsoon of 

January and February vertical mixing is enhanced and 

thermal stratification reduced until well mixed conditions 

are reached in monsoon again. During the premonsoon 

season SST was moderately present in July, August and 

September around 29⁰C. This process explains SST 

patterns at large latitudinal gradients depending on 

seasonal variation in atmospheric temperatures. This 

clearly depicted the well-known bi-modal distribution of 

surface temperature (Colborn, 1975) in the Bay of Bengal

.
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Figure 5: SNPP-VIIRS monthly composite of SST from January to December in the year 2017 
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Figure 6: Seasonal variation of basin averaged SNPP-VIIRS derived Sea surface temperature in the southwest 

Bay of Bengal 

 

3.5 Seasonal variability of chlorophyll-a 

 

Seasonal variability of chlorophyll-a in the southwest 

Bay of Bengal was studied from the monthly composite 

images of VIIRS derived chlorophyll-a (Figure 7). The 

chlorophyll-a concentration has been measured as a 

representative of the phytoplankton biomass varied from 

0.13 to 2.31 μgl-1 in the southwest Bay of Bengal and 

registered its highest concentration (2.31 μgl-1) at 

Nagapattinam during monsoon season and the lowest 

concentration observed during the summer (0.13 μgl-1) at 

Cuddalore coastal waters. However, the chlorophyll-a 

concentration was high in Palk Bay region throughout th 

year. 

 

Monthly means of chlorophyll-a concentrations  (Figure 

8) shows clear seasonal pattern with the highest 

concentration (0.60 μgl-1)  during premonsoon 

(September) followed by monsoon and the lowest value 

(0.25 μgl-1) was recorded during summer (May). Hence 

the annual variability indicated that the southwest Bay of 

Bengal was productive during premonsoon and monsoon 

seasons rather than the postmonsoon and summer 

seasons.Higher chlorophyll-a concentration is found 

during the  premonsoon and monsoon due to wind-

induced upwelling in the north Indian Ocean compared to 

other oceans (Yoder, 2001), and also the runoff from 

southern rivers could explain the enhanced level of 

nutrients and associated elevated chlorophyll-a (Kumar et 

al., 2010). During summer, the chlorophyll-a distribution 

was less due to the incoming solar radiation was higher 

because of cloud absence combining with low winds, 

resulting in highly stratified mixed layer depth. This 

inhibited any vertical mixing, and hence there was no 

input of nutrients from the subsurface to the upper ocean 

(Kumar et al., 2010). 

 

3.6. Seasonal variability of POC  

 

Seasonal variability of POC in the southwest Bay of 

Bengal was studied from the monthly composite images 

of VIIRS derived POC (Figure 9). The satellite derived 

POC concentration varied from 50.59 to 304.19 mgCm-3 

in the southwest Bay of Bengal. The POC level was 

found highest (304.19 mgCm-3) during the monsoon 

season at Nagapattinam coastal waters, whereas the 

lowest POC concentration (50.59mgCm-3)  observed 

during summer season at Cuddalore coastal waters. 

 

The mean values of POC obtained from spatial and 

temporal distribution pattern (Figure 10) shows moderate 

seasonal variation in Southwest Bay of Bengal. The 

highest POC value (111.163 mgCm-3) is observed during 

early postmonsoon season is January 2017 followed by 

monsoon season (November 108.721 mgCm-3). The 

distribution of POC was found minimum during summer 

season in May (62.599 mgCm-3). During the premonsoon 

season POC concentration was moderate (90 - 100 

mgCm-3). Similar such distribution pattern was observed 

for chlorophyll-a also in Southwest Bay of Bengal, which 

clearly suggested the interrelationship between 

chlorophyll-a and POC. 

 

The spatial distribution of the surface POC concentration 

in the ocean is generally governed by both the biological 

processes specifically in primary production and physical 

process particularly vertical mixing and advection 

(Stramska, 2014). The significance of the different 

processes can vary in time and space. Higher values were 

in fact present in monsoon season because surface 

primary production is high in the Bay of Bengal during 

monsoon (Qasim, 1977). Moreover large amount of 

suspended matter containing high organic matter is 

introduced into the Bay by major rivers flowing through 

the various geological formations of the Indian 

subcontinent (Rao, 1985). Probably this high amount of 

organic matter and primary production are responsible for 

the higher values of POC observed during monsoon 

season. In summer typically have low POC concentration 

because significant away from the source of nutrients, 

that the lower primary production might be inhibited due 

to water stratification (Huang et al., 2013). Accordingly, 

the POC concentrations are low during May and June, 

when the values of spatially averaged POC 

concentrations was 62.599 mgCm-3. By November and 

December, POC concentrations in the Southwest Bay of 

Bengal are more often greater than 111.163 mgCm-3
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Figure 7: SNPP-VIIRS monthly composite of chlorophyll-a from January to December in the year 2017 
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Figure 8: Seasonal variation of basin averaged SNPP-VIIRS derived Chlorophyll-a in the southwest Bay of  

Bengal  

 
Figure 9: SNPP-VIIRS monthly distribution of POC from January to December in the year 2017 
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Figure 10: Seasonal variation of basin averaged SNPP-VIIRS derived Particular Organic Carbon  in the 

southwest Bay of Bengal 

 

3.7. Relationship between SST, chlorophyll-a and 

POC  

 

The pixel/data points falling in the box of concurrent 

latitude 7.8–14.5N/longitude 77.2 to 82.5E covering the 

entire southwest Bay of Bengal was taken from the entire 

image. This was used to generate the mean value of 

monthly images of SST, chlorophyll-a and POC by using 

SeaDAS software. Monthly mean value for each dataset 

were plotted as bar plots to understand the variability in 

respective timescale and seasons in the figure 6, 8, 10. 

The resultant mean values of SST, chlorophyll-a and 

POC in the year of 2017 were analyzed by linear 

regression of variance on ranks using SigmaPlot (ver. 11) 

software to distinguish the effects of variables (Figure 

11). The differences in the mean values among the 

different seasons  was observed in the year of 2017. 

There was a statistically significant difference (P 

=<0.001) between seasons in the distribution of SST, 

chlorophyll-a and POC.  

SST measurements are based on the quantification of 

infrared radiation leaving the ocean surface (Njoku, 

1990) within the spectral range of 650–1200 nm. Water 

vapor is the largest source of uncertainty in space-borne 

SST measurements. In Bay of Bengal, (Poornima et al., 

2018) stated there is no clear interannual variation in the 

SST and chlorophyll-a over the decade with the 

consistent seasonal pattern. 

 

In this study an attempt was made to find the linear 

relationship between SST, chlorophyll-a and POC.  The 

relationship was found inversely proportional to the SST 

and chlorophyll-a observed  with the R2 = 0.54, SEE = 

±1.03. Similary, SST and POC also found a negative 

correlation  of the R2 =0.54, SEE = ±1.03.The better 

agreement between chlorophyll-a and POC observed with 

the R2=0.58, SEE = ±1.02 relationship was found positive 

suggesting that the POC distribution in the southwest Bay 

of Bengal was highly dependent on the distribution of 

phytoplankton biomass rather than other physical 

parameter.

 
Figure 11: a) Regression analysis of Sea Surface Temperature and Chlorophyll-a, b) Regression analysis of Sea 

Surface Temperature and Particular organic carbon and c) Regression analysis of Chlorophyll-a and Particular 

Organic Carbon  
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3.7. 1. Regression analysis of SST and Chlorophyll-a 

In this study an attempt was made to find the linear 

relationship between SST and chlorophyll-a observed the 

R2 = 0.54, SEE = ±1.03 and the relationship was found 

inversely proportional to the SST and chlorophyll-a. 

Analysis of relationship between SST and chlorophyll-a 

increases our understanding of the productivity of the 

ocean. Satellite images provide reliable important 

information on oceanographic conditions and 

simultaneously support marine environmental monitoring 

and assessment (Nurdin et al., 2014). The present study 

showed the relationship between the SST and 

Chlorophyll-a was good around 29°C.  When SST was 

high chlorophyll-a productivity is less.  A similar 

relationship has earlier been reported from the Indian 

Ocean (Goes et al., 2005). 

 

3.7.2. Regression analysis of Particulate Organic 

Carbon and SST  

The regression analysis between SST and POC was found  

inversely correlated to the R2 =0.55, SST = ± 1.03.  The 

observed higher POC formation rate at low temperatures 

is in a good agreement with observations of (Kang and 

Cleasby 1995). The POC was less in summer obviously 

chlorophyll-a also less due to high temperature. 

Chlorophyll-a showed a fairly good significant positive 

co-relationship with POC (Fernandes et al., 2009). 

However, SST was a negative correlation with POC and 

Chlorophyll-a. Further more, physical mechanisms 

constitute important control factors for POC distribution. 

For example, convective mixing induced by decreasing 

temperature is the main reason for POC to exhibit a 

uniform vertical profilein the water column (Zhao et al., 

2003; Delu et al., 2015). 

 

3.7.3. Regression analysis of Particulate Organic 

Carbon and Chlorophyll-a 
Chlorophyll-a and POC shows the significant relationship 

of R2=0.52 and SEE=±0.07. This suggests that an 

important portion of the POC is composed of marine 

diatoms, dinoflagellates and/or brown algae which 

contain chlorophyll-a (Dougherty et al., 1970). Many 

studies have focused on the relationship between POC 

and Chlorophyll-a concentration (Morel, 1988; Buck et 

al., 1996; Legendre and Michaud 1999; Morel et al., 

2006) and found the strong correlation between in-situ 

data with satellite data. They noted that, since 

chlorophyll-a is readily estimated from satellite data, such 

relationships provide a simple avenue for estimating POC 

from satellite data. They also pointed out the importance 

of POC in ecosystem models as the food source for 

zooplankton. Linear regression of POC on chlorophyll-a 

has been used to derive the phytoplankton fraction of the 

carbon from the slope of the fit, on the assumption that 

there is a back-ground of POC at sea that is not associated 

with phyto-plankton (Steele & Baird 1961, Townsend & 

Thomas 2002, Behrenfeld et al., 2005). The variability 

observed in the relationship between total carbon and 

chlorophyll-a arises from 2 main sources, variability in 

the proportion of non phytoplanktonic particulate carbon 

and variability in the phytoplankton carbon. The former 

type of variability is related to the status of the ecosystem 

as a whole, whereas the latter may be associated with 

changes in the phytoplankton community itself or with its 

acclimation to the light or nutrient regime. 

 

3.8. Multiple Linear Regression (MLR) 

Multiple regression was employed in order to ascertain 

the influence of SST and chlorophylla with  the 

dependent variable of POC.  

 

POC = 195.040 – 5.310 (SST) + 110.059 (chl a)-------(4) 

 

The  above multiple regression equation represent the 

dependent variable of POC the distribution of 

chlorophyll-a was highly positively correlated and 

strongly negatively correlated of SST on the distribution 

of POC while the SST acted in a reverse manner in the 

southwest Bay of Bengal. Comparsions  of VIIRS POC 

and Modelled POC (Figure 12) provided reasonably good 

performance on the POC derivations with RMSE = ± 

84.06, Mean Relative Error(MRE) = 45.42 %. in the 

southwest Bay of Bengal. Moreover, the NASA standard 

POC algorithm has MRE of ~42% for the open ocean 

(Swirgon and Stamska, 2015) implies that the 

performance of present algorithm is acceptable for coastal 

waters. 

 

 
 

 
Figure 12: a) Modelled POC image around SW Bay of 

Bengal b): Comparision between  VIIRS Satellite 

POC and modelled POC 
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Conclusion 

 

Ocean colour remote sensing has long been recognized as 

a powerful means for the study of the world’s oceans. 

The present study has clearly shown that in-situ 

Chlorophyll-a and POC concentration was high during 

monsoon compared to other seasons (POC= 108.72 

mgCm-3 and Chl a= 0.54 µgl-1). In contradictory, SST 

decreases during monsoon and increases during summer 

due to vertical mixing is enhanced and thermal 

stratification reduced until well mixed conditions are 

reached in monsoon. 

 

The observed positive relationship between chlorophyll-a 

and POC in multiple linear regression analysis suggesting 

the influence of monsoon inputs and primary production 

on the distribution of POC.  However, the negative 

relationship between SST and POC in MLR depicted that 

the increased SST hindered the primary production rate 

due to the strong stratification at the surface layers which 

results the unavailability of nutrients at the surface 

waters. Moreover, the seasonal distribution of SST, 

chlorophyll-a and POC in the southwest Bay of Bengal is 

influenced by the seasonally reversed monsoon winds, 

especially southwest monsoon winds which play vital 

role in enhancing the primary productivity in the coastal 

waters. However, the northeast monsoon winds and 

seasonal rainfall also take part in enhancing the 

productivity during monsoon season. 
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