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Abstract: The number of Earth observation(EO) data users and developers are growing and a number of challenges need 

to be solved to fill the gap of acquisition and use of ever-increasing satellite data acquired by ISRO. The majority of EO 

data still remains underutilized mainly because of the challenges of big data namely, volume, velocity, veracity and 

variety. However, the full information potential of EO data can be utilized by directly providing Analysis-Ready-

Data(ARD) to the user community. The ARD has all pre-applied corrections for radiometry and geometry. EO Data Cube 

(DC) is a new paradigm aiming to realize the full potential of satellite data by eliminating the barriers caused by these big 

data challenges and providing access to large Spatio-temporal data in a user and developer-friendly environment, thereby 

fulfilling both visualization and analysis needs. Systematic and regular provision of Oceansat-2 OCM Analysis Ready 

Data (ARD) will significantly reduce the post-processing burden on ISRO’s Oceansat series data users and application 

scientists. Nevertheless, ARD is not commonly produced as a part of standard data processing chain of Oceansat-2 mission 

(operational at IMGEOS/NRSC, Hyderbad) and therefore getting uniform and consistent ARD remains a challenging 

task. This paper presents an approach to enable rapid data access and pre-processing to generate ARD using interoperable 

services chains. The approach has been tested and validated by generating OCM-2 ARD while building the Oceansat-2 

OCM Data Cube. 
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1. Introduction 

 

Due to pressures from climate change, demographic, and 

economic growth, natural resource consumption and 

exploitation are more than ever (Rockstrom, et al., 2009). 

To better preserve the quality of the environment and 

improve the management of natural resources and land 

planning, it is useful to monitor these changes through time 

(Wulder  et al. 2008). One of the main characteristics of 

remote sensing is the ability to provide a synoptic view of 

a given spatial extent. With the archives from ISRO’s 

Ocean colour monitoring satellite sensors, the evolution of 

this coverage can be monitored all the way back to 1999 

(with the launch of IRS-P4). Now with the introduction of 

new satellite sensors (e.g. Oceansat-2 and upcoming 

Oceansat-3) facilitate inter-decade comparison and 

analysis of EO data. Remotely sensed Earth Observations 

(EO) data are increasingly available from a number of 

freely and openly accessible repositories. These data are 

highly valuable because of their unique and globally 

consistent information that they include (Lewis, et al., 

2016). Indeed, global observations together with scientific 

expertise and appropriate tools provide substantial benefit 

supporting economic development, decision-making, and 

policy implementation for all countries. However, the full 

information potential of EO data has not been yet realized. 

They remain still underutilized and stored in electronic 

silos of data. This is due to several reasons:  

 

(1) increasing volumes of data generated by EO 

satellites;  

(2) lack of expertise, infrastructure, or internet 

bandwidth to efficiently and effectively access, 

process, and utilize EO data;  

(3) the particular type of highly structured data that EO 

data represent introducing challenges when trying to 

integrate or analyze them;  

(4) and the substantial effort and cost required to store 

and process data limits the efficient use of these data. 

 

The EO data can be considered as Big Data, data that are 

too large, fast-lived, heterogeneous, or complex to get 

understood and exploited (Baumann, et al., 2016a). 

Consequently, we need new approaches to fully benefit 

from EO data and support decision-makers with the 

knowledge they require by systematically analyzing all 

available observations and convert them into meaningful 

geophysical variables. To address these Big Data 

challenges, it is necessary to move away from traditional 

local processing (e.g. desktop computer) and data 

distribution methods (e.g. scene-based file download) and 

lower the barriers caused by data size and related 

complexities in data preparation, handling, storage and 

analysis. This paradigm shift is currently represented by 

EO Data Cubes (Baumann, et al., 2016b), an approach that 

is receiving increasing attention as a new solution to store, 

organize, manage, and analyze EO data in a way that was 

not possible before. Data Cubes (DC) are aiming to realize 

the full potential of EO data repositories by addressing 

Volume, Velocity, and Variety challenges, providing 

access to large Spatio-temporal data in an analysis-ready 

form.  

 

2. Related Research and Operation  
 

Currently, there are various operational DC like the 

Australian Geoscience Data Cube (AGDC). These 

different initiatives are covering different spatial scales 

(e.g. AGDC, EODC (Earth observation Data cube by ESA 

[European Space Agency]); storing different data (e.g. 

only Landsat 8 for the EODC while the AGDC stores 

Landsat 5, 7, 8, MODIS, and Sentinel 2 data; only 

processed products for the ESDC); using different 

infrastructure (e.g. high performance computer for the 

AGDC, and cloud used by many others); using different 
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software implementations (e.g. Open Data Cube for the 

AGDC; RasDaMan by ESA). Figure 1 illustrates a spatial 

Hadoop framework for storing and serving the petabytes 

of EO data. Rasdaman used by ESA follows a similar 

framework for storing their datacube. The diversity of 

approaches asks also for a clear definition of an EO Data 

Cube. A recent publication of The Datacube Manifesto by 

CEOS defines a Data Cube as a massive multi-dimensional 

array, also called raster data or gridded data; massive 

entails that we talk about sizes significantly beyond the 

main memory resources of the server hardware. Data 

values, all of the same data type, sit at grid points as 

defined by the d axes of the d-dimensional datacube. 

Coordinates along these axes allow addressing data values 

unambiguously. A d-dimensional grid is characterized by 

the fact that each inner grid point has exactly two 

neighbours along each direction; border grid points have 

just one. The main objective of this initiative is to provide 

a data architecture solution to lower the technical barriers 

for users to exploit EO data to its full potential and 

consequently solving the problem of accessibility and use 

while increasing the impact of EO data. The primary 

problems for users are data access, data preparation, and 

efficient analyses to support user applications. The two 

first issues are essential challenges to tackle while building 

a DC. Indeed, these steps concern the generation of 

Analysis Ready Data (ARD). CEOS defines ARD as 

satellite data that have been processed to a minimum set of 

requirements and organized into a form that allows 

immediate analysis without additional user effort. Figure 2 

shows the ARD production steps from RAW satellite data. 

It is envisioned that systematic and regular provision of 

ARD will significantly reduce the burden on EO data 

users. To be considered as ARD, data should satisfy the 

following requirements: 

 

(1) metadata description; (2) radiometric calibration; (3) 

geometric calibration. ARD data from various ISRO 

missions such as Oceansat series and Resources at series 

can be ordered by placing a request at UOPS (User online 

processing system) maintained by NRSC, Hyderabad. 

However, getting uniform and consistent ARD remains a 

challenging task due to various environmental challenges 

and acquisition-related problems. As such, data ordering 

and delivery can take long time (e.g. several hours or 

days); and the full process from ordering to getting the data 

has not been automated yet. This clearly limits the 

accessibility and ingestion processes while building and 

updating a DC and consequently ask to find alternative 

ways to generate ARD products. Recognizing these issues, 

the aim of this paper is to present an approach to enable 

rapid data access and pre-processing to generate Analysis 

Ready Data. The approach has been tested and validated 

by significantly facilitating the generation of ARD using 

Oceansat-2 OCM medium-resolution imagery allowing to 

build the first version of the OCM-2 Data Cube.  

 

3. Building OCM-2 Datacube: Techniques and 

Infrastructure Implementation 

 

The Data Cube is a system designed to: 

1) Catalogue large amounts of Earth Observation data 

2) Provide a Python-based API for high-performance 

querying and data access 

3) Give scientists and other users easy ability to perform 

Exploratory Data Analysis 

4) Allow scalable continent-scale processing of the stored 

data 

5) Track the provenance of all the contained data to allow 

for quality control and updates.

 

 
Figure 1: Spatial Hadoop Architecture for DataCube Infrastructure 
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Figure 2: ARD production steps 

 

A fundamental aspect while building a DC is having ARD 

products ingested, stored in the database, and readily 

available. Considering that ARD products are not 

commonly generated by data providers and the fact that 

current delivery mechanisms are not efficient, this requires 

finding a procedure to routinely generate ARD ensuring 

that all observations stored in a Data Cube are consistent 

and comparable. Ideally, this procedure must be automated 

as much as possible (e.g. discover, download, and pre-

processing), should be able to discover and access data 

from different repositories, should handle different sensors 

(e.g. Oceansat-2 OCM, Resources at-2 LISS-3, LISS-4 

and AWIFS), and should be interoperable (e.g. to enhance 

reusability).  

 

To satisfy these requirements, the ARD Product 

Generation and Ingestion (APGI) framework has been 

developed and used. Figure 3 illustrates this automatic  

processing workflow for directly preparing the raw 

product for ingestion into datacube. APGI is a framework 

that helps to automate EO data discovery and (pre-

)processing using interoperable service chains for 

transforming observations into information products 

suitable for monitoring environmental changes (Giuliani, 

et al., 2017). This framework is developed using a 

combination of large storage capacities, high-performance 

computers, and interoperable standards to develop a 

scalable, consistent, flexible, and efficient analysis system 

that can be used on various domains through decades of 

data for monitoring purposes. APGI take the discovers the 

RAW product and Generated ARD and finally Ingests 

specified data to Datacube. While building the DC, the 

APGI framework has helped to automatically generate 

ARD products by overcoming the obstacles presented 

manual product generation and ingestion.  Figure 4 

highlights the key components of OCM-2 datacube 

framework for accessing ingested data via API and OGC 

compliant services. 

 
Figure 3: Processing workflow for OCM-2 RAW to ARD to Datacube Chain 

 

 
Figure 4: IRS Data cube framework for OCM2
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2.1 Indexing Data 

When you load data into the Data Cube, all you are doing 

is recording the existence of and detailed metadata about 

the data into the index. None of the data itself is copied, 

moved or transformed. This is, therefore, a relatively safe 

and fast process. There are a few pre-requisites for 

Indexing data:  

1) A working Data Cube setup.  

2) Some Analysis Ready Data to load.  

3) A Product definition added to your Data Cube for each 

type of dataset. 

4) Dataset metadata documents for each individual dataset. 

 

2.2 Oceansat OCM-2 data volume, coverage and 

Computing performance 

The available OCM-2 data had the total cumulative size of 

more than 30 TeraBytes (TB) (2-day repetivity and total 

year duration of 2011-2018) and as such high computing 

performance became one the major requirement of 

generating the datacube structure. Figure 5 illustrates the 

coverage of OCM-2 Path 9 and 10 coverage over India, 

Srilanka and parts of Tibet and Pakistan. High computing 

and processing performance was achieved by developing 

efficient software written in python and c++ for 

geophysical parameter generation, multi-temporal image 

registration, indexing and ingestion; to efficiently utilize 

multi-processing environment. Both data and task-level 

parallelism techniques were employed to process data 

within a meaningful time duration. The entire activity was 

divided into smaller goals for building this huge Datacube: 

development of scripts for  

 

(a) large data handling and reducing redundancy;  

(b) efficient storage and categorization of radiance, 

(c) reflectance and geophysical data for rapid access; 

(d) reference generation and multi-temporal image 

registration; and finally  

(e) development of geo-spatial web user interface. 

 

 
Figure 5: OCM-2 Path Row coverage over India 

 

3.2.1 Working behind Data loading 

Types of Data Loading 

There are two major use-cases for loading data from the 

Datacube Ad hoc access, and Large scale processing. 

These are described below. 

1. Ad hoc access 

• A small spatial region and time segment are chosen 

by the user. 

• Data is expected to fit into RAM. 

2. Large scale processing (GridWorkflow) 

•  Continental-scale processing 

• Used to compute new products or to perform   

    statistics on existing data 

•  Often unconstrained spatially 

•  Often unconstrained along the time dimension 

•  Data is accessed using a regular grid in small enough 

chunks 

The specific access pattern is algorithm/compute 

environment-dependent and is supplied by the user and 

requires manual tuning. 

For large scale processing, we turn to Dask (Dask 

Development Team, 2016) library which offers lazy load 

processing, this is explained in the following section. 

 

3.2.2 Lazy load with Dask 

In computer science, context lazy means roughly not 

computed until needed. Rather then loading all the data 

immediately load_data() function can instead construct a 

array (Hoyer, et al., 2016). The dataset that the user can 

use in the same way as a fully loaded data set, except that 

pixel data will be fetched from disk/network on-demand as 

needed. The on-demand loading functionality is provided 

by third-party libraries xarray and dask (used internally by 

array). Datacube code constructs a process for loading data 

on demand, this process is executed as needed by xarray + 

dask library when real data is required to be loaded for the 

first time. 

 

3.2.3 Internal interfaces 

The primary internal interface for loading data from 

storage is BandDataSource class, unfortunately, this rather 

generic name is taken by the specific implementation 

based on the raster library. BandDataSource is responsible 

for describing data stored for a given band, one can query: 

 

• The Shape (in pixels) and data type 

• Geospatial information: CRS + Affine transform 

and also provides access to pixel data via 2 methods 

1. read(): access a section of source data in native 

projection but possibly in different resolution 

2. reproject(): access a section of source data, re-

projecting to an arbitrary projection/resolution 

 

This interface follows very closely the interface provided 

by the raster library. Conflating the reading and 

transformation of pixel data into one function is motivated 

by the need for efficient data access. Some file formats 

support multi-resolution storage for example, so it is more 

efficient to read data at the appropriate scale rather than 

reading highest resolution version followed by 

downsampling. Similarly, re-projection can be more 

memory efficient if source data is loaded in smaller chunks 

interleaved with raster warping execution compared to a 

conceptually simpler but less efficient load all then warp 

all approach. 

 

3.3 Improved SIFT-based data product registration 

Achieving sub-pixel accuracy is a must for valid time-

series data and composite data product generation. An 

improved Scale Invariant Feature Transformation 

technique was developed to solve this challenge. For all 

the years 2011-2018, seasonal references are generated 

and geometrically registered for within the year image 
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registration. Further to handle the huge amount of 

associated data processing, extensively parallel C++ 

software were written for the utilizing full potential of 

multi-processor environment using OpenMP, SSE, and 

AVX  (Shukla et. al, 2018). 

 

3.4 Geo-Spatial Web-Interface 

Developing a multi-temporal data analysis portal which 

will help users in the visualization and analysis of pre-

processed data. It utilizes the strength of the underlying 

On-Line Processing of ARD temporal data-stacks for same 

geospatial regions.  

 

The platform provides freedom to develop and integrate 

pluggable applications for various algorithms which in 

turn can help users to process data online and get results 

instead of downloading input data and setting up 

environment for applications to run for the same this, in 

turn, saves lot of user’s time. The developed Web User 

interface uses Geoserver for serving Static layers such the 

pre-computed monthly composite layers to quickly serve 

data using WMS, and Datacube API calls for accessing 

multi-temporal ARD. Some major highlights of Web 

Interface are:  

 Online available Analysis Ready Data (includes 

Multi-Temporal Registration correction) 

 On-the-fly post-processing of ARD data 

(ingested in datacube framework) to generate 

custom mosaic for different Bio-geophysical 

products such as  

o Vegetation fraction 

o Land Surface Water,  

o Chlorophyll-a concentration 

o Aerosol Optical Depth 

o Remote sensing reflectance (6 bands) 

 Online Application for Change Detection 

between selected dates (includes PCA, SSIM 

etc.) 

 Tool for ROI based on-the-fly pixel drilling query 

over available geophysical products. (Figure 6) 

 Online Time-series Trend analysis algorithms 

such ARIMA. 

Figure 7 illustrates the web interface for data cube system 

allowing easy access to multi-temporal data and time 

series of geophysical products. 

 

 
Figure 6: Pixel drilling and Trend Analysis Application Integrated with Web User Interface 

 

 
Figure 7: Web User Interface with a static monthly composite layer of Vegetation fraction and Land surface water 

product 
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4. Conclusions 

 

Data Cubes are revolutionizing the way users can work 

with EO data. It is a disruptive technology that is 

significantly transforming the way that users interact with 

EO Data. It has the potential to routinely transform Earth 

Observations into useful and actionable information for 

users. To reduce the processing burden on users, 

generating Analysis Ready Data is a fundamental 

requirement. ARD products minimize the time and 

scientific knowledge required to access and prepare 

satellite data having consistent and spatially aligned 

calibrated surface reflectance observations. The proposed 

approach makes use of the APGI framework to build 

interoperable data processing chains for generating ARD 

products. This methodology has been tested in building the 

OCM-2 Data Cube, a country scale DC for monitoring the 

environment in space and time, and has allowed to 

efficiently download, pre-process, and ingest thousands of 

Oceansat scenes in a couple of days. The Datacube 

infrastructure allows for the integration of EO data from 

multiple satellites and as such, our future work focusses 

primarily on addition and assimilation of more and more 

data to the cube. Currently, the Resources at-2 LISS-3 

ARD is being generated and invested in the existing 

infrastructure.  

 

References 

 

Baumann, P., A.P. Rossi, O. Clements, A. Dumitru, B. 

Evans, P. Hogan, … J. Wagemann (2016a). Fostering 

cross-disciplinary earth science through datacube analytics 

(p. 32). 

 

Baumann, P., P. Mazzetti, J. Ungar, R. Barbera, D. 

Barboni, A. Beccati, … S. Wagner (2016b). Big data 

analytics for earth sciences: The earth server approach. 

International Journal of Digital Earth, 9(1), 3–29. 

 

Dask Development Team (2016). Library for dynamic task 

scheduling. URL https://dask.org 

 

Giuliani, G., H. Dao, A. De Bono, B. Chatenoux, K. 

Allenbach, P. De Laborie and P. Peduzzi (2017). Live 

monitoring of earth surface (LiMES): A framework for 

monitoring environmental changes from earth 

observations. Remote Sensing of Environment. 

 

Hoyer, S. and J. Hamman (2016), Journal of Open Res. 

Software, xarray: {N-D} labelled arrays and datasets in 

Python. 

 

Lewis, A., L. Lymburner, M.B.J. Purss, B. Brooke, B. 

Evans and S. Oliver (2016). Rapid, highresolution 

detection of environmental change over continental scales 

from satellite data – The Earth Observation Data Cube. 

International Journal of Digital Earth, 9(1), 106–111. 

 

Rockstrom, J., W. Steffen, K. Noone, A. Persson, F.S. 

Chapin, E. Lambin and  J. Foley (2009). Planetary 

boundaries: Exploring the safe operating space for 

humanity. Ecology and Society, 14(2). 

 

Shukla, T., S. Roy and D. Dhar (2018), Improved SIFT-

based Geometric Accuracy Improvement of Oceansat-2 

OCM Imagery for Time-series Datacube, ICRIEECE – 

2018. 

 

Wulder, M. A., J.C. White, S.N.  Goward, J.G. Masek, J.R. 

Irons, M. Herold, … C.E. Woodcock (2008). Landsat 

continuity: Issues and opportunities for land cover 

monitoring. Remote Sensing of Environment, 112(3), 

955–969.

 

315

https://dask.org/



