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Abstract: The study was carried out with an aim to enumerate the community characteristics, above ground biomass 

(AGB) and validation of field based biomass with the calculated AGB values using remote sensing and GIS. The study 

was carried out for East Khasi hills district of Meghalaya using random field sampling in selected land use. Sampling 

plots were selected in replicate keeping in account altiudinal variations and site characteristics. Soil samples were 

collected from two depths and anlyzed using sandard methods. The species richness was more in subtropical broad-

leaved (SBL) forest than the pine forest (PF). However, stand density and basal cover was more in pine forest primarilly 

due to large number of individuals having more girth. Total tree biomass estimated in the SBL and PF were 300.5 t ha-1 

and 195.89 t ha-1, respectively. However predicted AGB was 232.77 t ha-1 in the SBL stand and 152.08 t ha-1 in PF 

stand. However, calculated AGB was 300.28 t ha -1 in SBL forest and 215.8 t ha-1 in PF. Finally, spatial carbon stock 

map of the selected forest type was prepared and the average biomass carbon was 128.02 t ha-1 in SBL and 107.9 t ha-1 

in pine forest. Total carbon stock was calculated by summing the carbon stock of different pool i.e., tree, litter and soil. 

Implication of the land use change revealed that an amount of 86.36% carbon will be emitted in the situation when SBL 

is converted into abandoned land. However, an amount of 82.67% carbon will be emitted when PF are converted into 

abandoned land.  
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1. Introduction 

 

Climate is one among the vital basis of vegetation 

composition globally and having important stimulus on 

species distribution and structural and functional aspect 

of the forests. It has been reported that landscape plant 

composition and soil acts as a noteworthy sink of 

atmospheric carbon dioxide (CO2) (Wani et al., 2010). 

About 6.22 and 2.1 Gt CO2 were released annually 

through deforestation and forest degradation, respectively 

(Pearson et al., 2017). About 80% of the above-ground 

terrestrial carbon and 40% of below-ground terrestrial 

carbon is stored in the forests (Olson et al., 1983; Dixon 

and Turner, 1991). Worldwide it has been recognized that 

deforestation and forest degradation requisite effective 

management for minimizing greenhouse gas emissions 

(GHGs). Changes in forest management generally results 

in less carbon sequestration (Lal and Singh, 2000). 

Global warming is viewed as increment in normal 

temperature of the Earth's surface and seas in late decades 

and its anticipated continuation. The Intergovernmental 

Panel on Climate Change (IPCC, 2007) anticipates that 

worldwide temperatures are probably going to rise by 1.1 

to 6.4 °C between 1990 and 2100. The CO2 is the specific 

constituent of photosynthesis hence influencing plant 

effectiveness while it is also the key members of ozone 

harming substances. Hence it is wise to acknowledge that 

alterations in climate scenario would also alter the 

functioning system of biological community. Other than 

carbon in the soil, forests also store a lot of carbon in the 

biomass (Freibauer et al., 2004). The biomass is by and 

large progressively used to measure pools and fluxes of 

GHGs along with land use changes (Cairns et al., 2003). 

To know the role of vegetation in carbon cycle, biomass 

and productivity estimations are the transitional steps 

(Kale et al., 2002). The measure of carbon sequestered by 

forests can be evaluated from biomass and is roughly 

50% of forest dry biomass weight comprises carbon 

(Cairns et al., 2003; MacDicken, 1997). Researchers have 

developed a number of allometric equations for biomass 

estimation and were used at national level aboveground 

biomass studies (Chave et al., 2005). Further geospatial 

approaches, recently become more important and play a 

crucial role in mapping and monitoring forest degradation 

of large area with very minimum effort and time. Remote 

sensed images have shown high correlation between 

spectral bands and vegetation parameters like above 

ground biomass for the large area (Roy and Ravan, 1996; 

Lu, 2005). 

 

Many studies reveal that satellite derived spectral 

vegetation indices such as simple ratio (SR), normalized 

difference vegetation index (NDVI) and enhanced 

vegetation index (EVI) have very strong relationship with 

biomass and plant productivity (de Fries et al., 1995; Kale 

et al., 2002; Roy and Ravan ,1996).  Gupta and Sharma 

(2014) carried out a study on estimation of biomass and 

carbon sequestration of trees in protected area of Rajouri, 

India and reported 34.52 tons of carbon in its standing 

biomass. Bordoloi et al. (2017) had applied non-

destructive approach and estimated AGB of 269.65 Mg 

Ha-1 and 206.03 Mg Ha-1 for Tectona grandis and 

Gmelina arborea plantations, respectively in Papum Pare 

districts of Arunachal Pradesh. Devagiri et al. (2013) 

carried out a remote sensing based approach to estimate 

AGB and carbon pool and reported 7.25 to 287.047 Mg 

ha-1 AGB from south western part of Karnataka. Kashung 

et al. (2018) had applied vegetation indices based 

approach in different landuse sector and reported 84.94 to 

218.21 Mg ha-1 AGB from West Kameng district 

33

mailto:biswajitdas.19.1989@gmail.com


Journal of Geomatics  Vol. 14, No. 1, April 2020 

 

Arunachal Pradesh. The aim of current study was to 

predict biomass and carbon stock in different forest type 

and effect of landuse implication on carbon stock of the 

study area. 

2. Study area 

 

The East Khasi Hills district is situated in south-central 

part of state of Meghalaya having a border with 

Bangladesh in the south. The district occupies a total 

geographical area of 2,748 km2 (Figure 1) and is situated 

between 25°07˝ and 25°41˝ N latitude and 91°21˝and 

92°09˝ E longitude. The climate of the district varied 

from tropical to temperate and weather is humid for 

major portion of the year excluding fairly dry period 

during December and March. The district is influenced by 

the south-west monsoon and receives heavy rainfall.  

 
Figure 1: Location map of the study area 

3. Materials and Methodology 

 

The study has three phase work which include primary 

data collection, spatial and non-spatial database creation 

and spectral modelling. The field measurement was 

carried out in three different landuse types viz., 

subtropical broad-leaved forest (SBF), Pine forest (PF) 

and abandoned lands (AL). Altogether 45 quadrats (0.1 

ha) were laid in selected forest patches using non- 

destructive approach. All the individual (dbh ≥10cm) 

encountered in the quadrats were measured with their 

height and diameter at breast height (1.37m above ground 

level).  For litter carbon estimation, litter samples were 

collected from 1m x 1m qudrat from each sample plot in 

replicates and were brought to laboratory for further 

analysis. Soil samples were collected from each plot from 

two soil depths (0-25 cm and 25-50 cm). Soil pH, 

moisture content, bulk density and soil carbon were 

determined following standard methodology (Allen et al., 

1974; Anderson and Ingram, 1993). The tested quadrat of 

the study area is covered by 3 sets of Landsat operational 

Land Imager (OLI) satellite data with 30m spectral 

resolution (path/row:136/42,136/43, and 137/42) 

downloaded from Earth Explorer. All these  tiles have 

undergone the preprocessing operations viz., band-wise 

radiometric calibration for removal of spurious digital 

number in raw satellite data, which converted the DN 

values to at sensor radiance and conversion to surface 

reflectance following USGS (2019), layer stacking of 

bands to get false colour composite (FCC) image and re-

projection  to  Universal Transverse Mercator projection 

system with zone 46 north. All the images were then 

mosaicked, study area was extracted and followed by 

land use and land cover classification using supervised 

approach (Figure 2).  

 
Figure 2: LULC map of the study area 

The study area was classified into  seven category namely 

waterbody, settlement, sandy area, subtropical broad-

leaved forest, pine forest, agricultural land, and 

abandoned land (includes barren and degraded forest). 

The species-specific volumetric equations along with 

specific gravity or wood density were applied for 

calculating the volume of each individual tree. Tree 

alometric equations for many species were not available, 

hence general equation of the state were used. A fraction 

of 0.55 of biomass was used for estimating AGB carbon 

stock while below ground biomass (BGB) was estimated 

by taking 0.26 fraction of AGB (IPCC, 2003). The total 

carbon stock was calculated by summing the carbon stock 

of different pools viz. tree, litter and soil carbon. The 

prediction of biomass was carried out for selected landuse 

with the help of satellite data using Normalized 

Difference Vegetation Index (NDVI) Rouse et al. (1974) 

and Soil Adjusted Vegetation Index (SAVI), Huete 

(1988). A linear regression analysis was applied to find 

out the correlation between different vegetation indices 

and observed AGB. The resultant best-fit model was then 

used for spectral modeling of biomass and carbon stock 

of selected land use. Satellite derived vegetation indices 

were applied to the image of study area and based on 

location of sample plot, values of vegetation indices were 

extracted for each plot. Linear regression model was 

34



Journal of Geomatics  Vol. 14, No. 1, April 2020 

 

applied to extracted vegetation indices value against the 

plot biomass based on field inventory data. 
4. Results 

4.1 Soil characteristics  

Bulk density value of the SBL ranged from 0.70 g cm3 

while the values were 1.27 g cm3 and 1.06 g cm3 in the 

pine forest and abandoned lands, respectively. 

Arunachalam and Arunachalam (2000) have reported BD 

of 1 gcm3 from sacred forest, Mawphlang forests, 

Meghalaya. The soil moisture content was greater 

(55.93% to 19.86%) in the upper soil layer than the lower 

soil layer (15.99% to 45.78 %). The moisture content in 

abandoned land was unusually higher than the rest of the 

sites which could be mainly due to dense ground growth. 

The pH of soil was acidic and values varied from 3.89 to 

6.60 in upper soil depth and 4.25 to 6.96 in the lower soil 

depth. Soil pH was higher in PF followed by AL and 

SBL. In SBL forest, the upper soil layer showed lower 

pH than the lower soil depth which could be associated to 

lower levels of organic matter and greater extent of 

leaching of a few nutrient elements. The SOC is the 

organic fraction of soil exclusive of non-decomposed 

plant and animal residues and is an important indicator of 

soil health, mitigation and adaptation to climate change. 

Percentage of SOC ranged from 1.14% to 2.87 % in the 

upper layer and 0.82% to 2.13% in lower soil depth 

which shows vertical variability of SOC distribution 

(Table 1). In upper soil depth Site-2 of SBF had the 

greater percentage of SOC in both the soil depths while 

more organic carbon in lower soil depth was in Site-2 of 

SBL forests. High SOC provides nutrients to plants, 

enhances soil fertility and improves the water availability. 

The upper soil depth had greater SOC than the loer soil 

depth in all the landuse sectors. 

4.2. Above ground biomass and carbon  

Altogether, 71 tree species were recorded from the SBL 

and pine forest and the broad-leaved forests recorded 

maximum species richness (63 species) than the pine 

forest. Stand density did not differ much and ranges 

between 558 stems ha-1 and 585 stems ha-1 with basal 

area of 34.43 m2 ha-1 to 38.10 m2 ha-1 in the former and 

later forest stands. The litter carbon was lower (0.82 t ha-1 

to 2.33 t ha-1) in the SBL than the pine forest which could 

be attributed due to slow decomposition of pine needles. 

The SOC ranged from 21.25 t ha-1 to 41.53 t ha-1 in the 

SBL and 46.04 t ha-1 to 69.22 t ha-1 in the PF and 28.89 t 

ha-1 to 47.33 t ha-1 in abandoned land. The plot wise (0.1 

ha) total biomass for the study area ranged from 10.67 to 

62.76 t. The total biomass estimated in SBL forest was 

300.5 t ha-1 where in the pine forest it was 195. 89 t ha-1. 

Plot wise total biomass in SBL forest ranged from 13.21 t 

to 62.76 t and 10.69 to 27.58 t in Pine forest. The total 

carbon stock estimated were 165.28 t ha-1 for SBL forest 

and 107.74 t ha-1in the Pine forest (Table 3). Pala et al. 

(2013) reported much higher biomass (1159.900 Mg ha-1) 

and carbon density (587.190 Mg ha-1) from sacred groves 

of Garhwal Himalaya. Waikhom et al. (2018) reported 

AGB from 962.94 to 1130.79 Mg ha−1 from sacred 

groves of Manipur. However, Sundarapandian et al. 

(2012) reported lower biomass (74.8 mt ha-1) and carbon 

(47.13 mt ha-1) density. Simalarily Devagiri et al. (2013) 

had reported lower biomass (70 t ha-1) and carbon stock 

(33 t ha-1). Correlation was established between plot 

biomass (t/ha) and basal area for each site and higher 

coefficient value was observed in Pine forest (R2 = 0.97) 

than the SBL (R2 = 0.95). 

4.3. Regression analysis between vegetation indices 

and plot-based biomass 

Satellite derived vegetation indices were extracted for 

each plot and linear regression model was applied to 

extracted vegetation indices against the field-based plot 

biomass. The reflectance based NDVI ranged between -

0.74 and 0.84 (Figure 3a) and the negative values of 

NDVI correspond to waterbodies/lakes. NDVI value of 

SBL forest ranged from 0.27 to 0.73, in pine forest from 

0.35 to 0.54 and 0.22 to 0.35 in the abandoned land. The 

NDVI and plot based correlation coefficient was low 

(R2=0.47). The advantage of SAVI is that it the soil 

background effect and results are better than the NDVI. 

The SAVI value ranged from -0.22 to 0.63 while plot 

wise values varies between 0.09 and 0.44 (Figure 3b). 

The plot wise SAVI values (0.18 to 0.44) of SBL forest 

was more than the pine forest (0.14 to 0.25) and 

abandoned land (0.09 to 0.22). When linear regression 

model was applied to the extracted values of SAVI and 

biomass it showed greater correlation coefficient value 

(R2=0.71) than the NDVI mainly could be because it 

considers the soil brightness factor and minimized the 

effects (Table 2). Linear regression analysis between field 

based estimated AGB and satellite derived vegetation 

indices were carried out to comprehend their associations. 

The observed correlation coefficient can be compared 

with the values of R2=0.73, 0.70 and 0.68 as reported by 

Devagiri et al. (2013), Das et al. (2017) and Kashung et 

al. (2018).  

4.4 Biomass and carbon stock modelling 

The SAVI based model derived from linear regression 

analysis among the different vegetation indices and field 

based biomass was applied for modeling of total biomass 

of selected land use. The predicted total AGB for the 

study area was 199.91 t ha-1 (Figure 4). However, 

predicted biomass was 232.77 t ha-1 and 152.08 t ha-1 for 

SBL and Pine forest (Table 3). The mean total carbon 

stock for study area was 109.95 t ha-1. The maximum 

total biomass carbon stock predicted for the SBL forest 

was 128.02 t ha-1 and for Pine forest was 107.90 t ha-1. 

The predicted spatial carbon stock in different forest type 

is given in Figure 4. Carbon is among the larger 

constituents of the biomass and to assess carbon stock 

from biomass. We have used coefficient of 0.55 for 

calculating total biomass carbon of the area and total 

carbon. SBF stores greater carbon stock than the Pine 

forest followed by the abandoned land. Further PF 

accumulate greater carbon in the soil than the other two 

landuse (Table 4). Implication of the landuse change 

revealed that an amount of 86.36% carbon will be emitted 

in the situation when SBL forest is being converted into 

abandoned land. However, an amount of 82.67% carbon 

will be emitted in the situation when PF is being 

converted into AL. However once AL is converted into 

broad-leaved forest through management about 7.33 

times carbon will be captured and stored while 5.77 times 

carbon will be stored in case of Pine forest. 
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Table 1: Soil organic carbon (%) in selected landuse types of East Khasi hills district, Meghalaya 

 

Table 2: Coefficient for R2 for biomass and different vegetation indices 

Vegetation Indices Equation  R2 

Normalize Difference vegetation Index (NDVI) y = 42.325x – 3.6739 0.47 

Soil adjusted vegetation Index (SAVI) y = 78.895 x– 1.512 0.71 

 

 

 

 
Figure 3: (a) NDVI  (b) SAVI map of the study area 

 

Table 3: Predicted and observed AGB and AGB carbon 

AGB and carbon stock 

(t ha-1) 
Average entire study area SBL Forest Pine Forest 

Total Estimated biomass   
256.91 300.50 195.88 

Total Predicted biomass   
199.91 232.77 152.08 

Total Estimated carbon stock   
141.30 165.28 107.74 

Total Predicted carbon stock   
109.95 128.02 107.90 

 

Table 4: Carbon stock (t/ha) in different pool of selected landuse 

Carbon stock Broad-leaved forest Pine forest Abandoned land 

AGB 165.28 107.74 - 

BGB (root) 90.90 59.25 - 

Litter 1.79 2.56 - 

Soil 30.09 57.15 39.28 

Total 288.06 226.70 39.28 

 

 

Sites/ Soil 

depths (cm) 

SBL PF AL 

0-25cm 25-50cm 0-25cm 25-50cm 0-25cm 25-50cm 

Site-1 2.2±0.15 1.75±0.05 1.39±0.07 1.24±0.02 1.77±0.01 1.386±0.02 

Site-2 2.87±0.15 2.04±0.11 2.13±0.04 1.82±0.03 1.54±0.03 1.32±0.02 

Site-3 1.33±0.16 0.82±0.08 1.72±0.03 1.44±0.006 1.14±0.04 0.94±0.09 
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Figure 4: Predicted Carbon stock map for the study area 

 

5. Conclusion  

 

All together 71 tree species were recorded from study 

area and species richness was more in SBL forest the pine 

forest. Soil was acidic in nature and acidity was more in 

Pine forest. Acidity decreases with increase in soil depth 

mainly due to leaching and precipitation. Soil was sandy 

in nature. AGB was found to be greater in SBL forest 

than the pine forest and similar trend was obtained for 

carbon. Satellite derived biomass and carbon of selected 

landuse was also calculated using NDVI and SAVI 

indices. SAVI has resulted better correlation with the 

observed carbon values. Spatial maps of biomass and 

carbon was prepared using SAVI regression equation 

which will be useful for formulating suitable strategic 

plan for future enhancement of carbon stock of the study 

area. Total geographical area under subtropical broad-

leaved and Pine forests in East Khasi hills district is 

106517 ha and 88001 ha, respectively. Total estimated 

AGB for former forest was 17596675 tonnes and 

9433795 tonnes for later forest with an average of 165.2 

tones/ha and 107.2 tones/ha, respectively. Subtropical 

broad-leaved forest stores greater carbon stock than the 

Pine forest followed by the abandoned land. However, 

Pine forest accumulates more carbon in the soil than the 

other two land use. Implication of the land use change 

revealed that an amount of 86.36% carbon will be emitted 

in the situation that SBL forest is being converted into 

abandoned land. However, 82.67% carbon will be 

emitted in the situation when pine forests are being 

converted into abandoned land.  
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