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ABSTRACT:  High-dimensional geospatial data visualization has gained much importance in recent decades. But to 

analyze it, traditional technologies used in machine learning are not convincing enough, and thus to switch to a sub-

domain of machine learning called deep learning that has gained popularity because of its accuracy and high dimensional 

data analysis power. Its convergence with geospatial data analytics shall prove to be a boon to the researchers working in 

the domain of geospatial data. Though Geospatial information is mostly used in the global mapping process of satellite 

images. The heterogeneity of the data makes it infeasible for global scale mapping. Therefore, to handle this problem is 

to partition the entire world into several regions. Semantic segmentation is one such technique and is widely used for 

information extraction from satellite images. The technique essentially refers to segmenting the input image pixel into 

multiple semantic regions, that is, to assign a semantic pixel category to each pixel in the image. In this context, we 

propose a semantic segmentation method that utilizes the spatial information of the high-resolution remote sensing data. 

The aim is to leverage the openly available data to automatically generate a larger training dataset with more variability 

and can be used to build more accurate deep learning models. The proposed automatic extraction can capture context 

information and its symmetric expanding path enables precise localization. The most characteristic property is the up-

sampling part that has feature channels that allow propagation of context information to higher resolution layers and 

makes the expansive path roughly symmetric to the contracting path yielding a U-shaped architecture. Mean IOU (mIOU) 

is used as the performance matrix and results yield 0.79. Since the model is trained on a small training dataset, that makes 

the deep learning model prone to overfitting. Training on such a small set of images makes this a challenging task. 

Validation dataset metrics obtained after training will signify the model’s general adaptability on other datasets of other 

segmentation tasks.  
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1. Introduction 

 

Geospatial remote sensing data plays a key role in various 

scientific disciplines as it seeks to understand, analyze, and 

visualize real-world phenomena according to their 

locations (Bharath et al., 2018a). It is believed that almost 

80% of all data is geographic in nature because the 

majority of information surrounding us can be 

georeferenced (VoPham et al., 2018). The demand for the 

available geospatial data is consistently growing at an 

ever-faster pace, leading to the constant increase in 

demand for processing power and storage still emerging. 

However, the highly variable nature of the information 

demands human supervision to distinguish the interesting 

patterns (Vorona et al., 2019; Bharath et al., 2018b). 

Therefore, understanding geospatial remote sensing 

images in the semantic context is particularly important 

and its intelligent identification is definitely demanded.  

 

Remote sensing image comprehension aims to 

automatically assign a specific semantic label to each pixel 

according to its contents and has become a vital research 

topic in the field of remote sensing image interpretation 

considering its different applications in urban planning, 

traffic control, land resource management, and disaster 

monitoring (Prakash et al., 2020; Zhang et al., 2019). 

Moreover, automatic feature extraction through machine 

learning is crucial in order to understand the ever-changing 

dynamics, including anthropogenic changes. The 

automated extraction of high-resolution remote sensing 

images is highly desirable but poses many difficulties due 

to the wide variety of volumes and unavailability of 

labeled annotations (Prakash et al., 2020; Özyurt., 2020). 

The traditional methods for manually digitizing were 

human-intensive and expensive (Ramachandra et al., 

2012; Bharath et al., 2018a). They are limited to point 

observations. Therefore, impossible to scale it to large 

cities or geographical areas. Also, non-adaptable to build 

and maintain into the digital field. However, the 

convergence of deep learning and computer vision with 

remote sensing has enabled automated extraction to be 

highly efficient and cost-effective.  

 

The recent development of deep learning technologies has 

played an increasingly important role in delivering 

computer vision and addressing problems such as pattern 

recognition and feature detection (Ramachandra et al., 

2015). Unlike low-level and mid-level features, the models 

can learn more powerful, abstract, and discriminative 

features via deep architecture neural networks irrespective 

of engineering skill and domain expertise. Moreover, deep 

learning techniques have been widely implemented in 

remote sensing images, especially in feature extraction 

from satellite images with highly accurate and precise 

results. Having prerequisites such as highly improved 

satellite images in terms of spatial, spectral, and temporal 

resolutions and Geomatics communities, automated 

extraction is the current need. The Convolutional Neural 

Networks especially has demonstrated outstanding 

performance due to the availability of large-scale 

geospatial data and the advancement of computing power. 

Although they have achieved dramatically improved 
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classification accuracy, they are still easily misclassified 

due to the complex characteristics and occlusions 

(Petrovska et al., 2020; Li et al., 2019).  

 

Semantic segmentation is one such important task based 

on convolutional neural networks. The technique 

essentially refers to segmenting the input image pixel into 

multiple semantic regions, that is, to assign a semantic 

pixel category to each pixel in the image. It is widely used 

in computer vision applications such as remote sensing 

image interpretation, medical image processing, and many 

more (Tran et al., 2020). Semantic Segmentation of 

satellite images is one of the crucial problems as it requires 

a model that is capable of capturing both the local and 

global information at each pixel level (Gleason et al., 

2010). To integrate these, the UNet neural network 

architecture is proposed with the aim to supplement a 

contracting network by successive layers, and pooling 

operators are replaced by up sampling operators. The fully 

convolutional network is capable of handling with very 

few training images and yields more precise segmentation 

outputs (Ronneberger et al., 2015). The study addresses the 

problem of automated extraction of road networks and 

building footprints from satellite imagery. Road network 

and building footprint extraction play a significant role in 

many applications that involve updating maps, traffic 

regulations, city planning, etc. This paper proposes a 

convolutional architecture for automated extraction so as 

to improve the robustness of semantic segmentation for 

satellite images leveraging open data source platforms.  

 

2. Datasets 

 

Two popular remote sensing datasets Deep Globe dataset 

and INRIA dataset with different spatial properties are 

chosen to better demonstrate the robustness and 

effectiveness of the proposed method. Both the datasets are 

essentially configured for pixel-wise segmentation. In 

addition, details about the datasets are described below: 

 

Datasets for road network extraction: Deep Globe dataset 

was sampled from the Digital Globe and Vivid Images 

dataset with their road parts labeled to generate annotated 

maps. The dataset covers images captured over Thailand, 

Indonesia, and India. The images consist of 3 channels i.e., 

Red, Green, and Blue with a ground resolution of 50 

cm/pixel and each of the original geotiff images are 19′584 

× 19′584 pixels. In the annotated map each pixel is 

classified as either road or non-road. The dataset consists 

of 6226 and 1243 training and validation images, 

respectively. The complexity of the dataset is that it is 

highly imbalanced in terms of the number of pixels per 

class, i.e., roads are thin lines within the images and 

therefore occupy few pixels only as compared to the 

background pixels that means more 0 values (non-road 

pixels) compared to 1 value (road pixels) as shown in 

Figure 1(a).  

 

    
(a) (b) 

Figure 1. Examples of images and labels from the (a) 

Deep Globe dataset and (b) INRIA dataset include the 

original image and label, and the label has two classes, 

which are road and building  

  

Dataset for building extraction: INRIA dataset as shown in 

figure 1(b) consists of 180 orthorectified aerial images in 

the RGB channel. Each pixel is of 0.3 meters resolution. 

The dataset is composed of two subsets namely, train and 

test covering 405 sq. km area. The training data is 

annotated for two classes: building and not building and 

covers regions Austin, Chicago, Kitsap County, Western 

Tyrol, and Vienna, whereas the test set covers a different 

set of regions: Bellingham, Bloomington, Innsbruck, San 

Francisco, Eastern Tyrol. The varying urban densities in 

covered regions along with variation in training and test 

images make the INRIA dataset complex and we can 

explore the capability of our proposed model.  

 

3. Method and Data 

 

3.1 Model Architecture 

The architecture of our segmentation model was adapted 

from (Ronneberger et al., 2015), originally designed for 

biomedical image segmentation. The architecture as 

shown in Figure 2(b) consists of a contracting path and an 

expansive path wherein the contracting path follows the 

typical architecture of a convolutional network. The 

encoding and decoding part are composed of four blocks 

and each consisting 3x3 convolutions layers i.e., unpadded 

convolutions are applied repeatedly, followed by a 

rectified linear unit (ReLU), a 2x2 max pooling operation. 

The down sampling has deconvolutional layer with stride 

2 and concatenation layer, two 3x3 convolutional layer 

followed by ReLU as shown in fig 2 (a). The number of 

feature channels gets doubled at each of the down 

sampling steps. The final layer consists of a single 1x1 

convolution layer mapping each 64-component feature 

vector to the desired number of classes. The architecture 

has 23 total layers. The presence of a large number of 

feature channels in the up-sampling part that allows the 

network to propagate context information to the higher 

resolution layers makes the UNet architecture unique.  
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(a) 

Figure 2(a). Encoder and decoder layers 

 

3.2 Training Process 

The architecture is built with the keras 2.8.0 and Tensor 

Flow in python 3.6+. Keras and Tensor Flow are open-

source python libraries. The training dataset was created 

by dividing the images into patches of size 256 x 256 x 3 

which had sufficient distribution of roads and building 

structures with the surrounding environment so as to be 

learned by the networks. The experiment was conducted 

for a total number of 100 epochs with a batch size of 16. It 

was trained with the mini-batch Stochastic gradient 

descent using the ADAM optimizer. Binary cross entropy 

loss function was used which essentially gives the cross-

entropy loss between the predicted classes and the true 

classes. 

 

3.3 Evaluation Metrics 

The quantitative performance of the segmentation model 

was evaluated using 4 different evaluation metrics namely 

the ‘Precision’, ‘Recall’, ‘F1-score’, and mean of 

Intersection-over-Union (‘MeanIoU’). Precision refers to 

the percentage of correctly classified positive pixels 

amongst all pixels predicted as positive. Recall gives the 

percentage of correctly classified positive pixels among all 

true positive pixels. F1 score is essentially the combination 

of precision and recall. The mean of Intersection-over-

Union (mIOU) first computes the IOU for each pixel class 

and then computes the average over classes. The values of 

applied metrics are in the range of 0 to 1, wherein higher 

values indicate better classification performance. The 

experimental evaluation is more focused on mIOU since it 

is the standard metric for semantic segmentation. The 

metrics can be mathematically calculated as follows: 

 

Precision = TP/ (TP + FP) 

Recall = TP / (TP + FN) 

F1-score = (2 * Precision * Recall) / (Precision + Recall) 

mIOU = TP / (TP + FP + FN) 

where, TP = True Positive, FP = False Positive and FN = 

False Negative 

  

4. Results and Discussions 

 

Experiments were conducted on two publicly available 

datasets: Deep Globe and INRIA. Figure 4 shows the 

segmentation results of both datasets. From left to right are 

the test images, the ground-truth, the predicted output 

segmentation image. The qualitative and quantitative 

results demonstrate that the proposed model shows a 

higher mean IOU value of 0.79 for INRIA that is building 

extraction. It can be observed that buildings were extracted 

successfully with fewer classification errors and with 

sharper boundaries. Also, the model is able to extract road 

pixels however, it fails to maintain the connectivity due to 

class imbalance problems meaning a greater number of 

background pixels that is also evident from the precision 

and recall values of table 1. The model has found a local 

minimum that is evident from the graph of figure 3a and 

3b. In the case of INRIA, the model returns more false 

positives and also predicts the building outlines reasonably 

well. The model is also compared with existing studies and 

was found to outperform the state-of-the-art methods 

(table 2 and 3). However, due to variability in the images 

of each subset, the model cannot perform well on all 

subsets. The evaluation metrics are tabulated in table 1. 

 

 
Figure 2(b). Network architecture of the proposed 

UNet model 

 

 

. 
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Figure 3. (a) Iou vs Epoch graph for Deep globe dataset 

(b) Iou vs Epoch graph for INRIA dataset for training 

and validation respectively 

 

Table 1. Evaluation metric of Deep Globe and INRIA 

Dataset Precisi

on 

Recall F1 

score 

mIOU 

Deep 

Globe 

Dataset 

0.82 0.305 0.445 0.625 

INRIA 

Dataset 

0.91 0.67 0.78 0.79 

 

Table 2. Comparing results of INRIA dataset 

Method Iou 

Ours 0.79 

UNet+soft jaccard loss [12] 0.71 

 

Table 3. Comparing results of Deep Globe dataset 

Method IoU 

Ours 0.625 

ResNwt50-D2S [1] 0.606 

 
Figure 4(a). 

test image 

 

Figure 4(b). 

ground truth 

image 

Figure 4(c). 

predicted 

image 

 

5. Conclusions 

 

The aim of the study is to extract roads and building 

footprints from satellite images as a binary semantic image 

segmentation problem. For each input satellite image, the 

model predicts if a pixel belongs to class 1 (road or 

building) or class 0 (non-road and non-building). The 

distinct use of datasets for automated extraction compels 

the need to design our neural network with efficient 

memory optimizations. Despite bulk images, these 

datasets still fail to train a robust model for analyzing 

satellite imagery on a global scale. The challenges 

essentially involve spatial variations, because roads differ 

in their appearance due to regional terrain and urban 

density in developed vs developing countries complicates 

the model learning. However, the proposed UNet model 

based on contracting and expansive path performed well 

on both the datasets being different in spatial properties.  
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