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Abstract: Presence of cloud in optical remote sensing data hides the useful information and reduces the applicability of 

the data. Majority of operational techniques of extracting cloud cover from optical remote sensing data employ digital 

classification of individual pixels. These approaches ignore the spatio-temporal information about the cloud cover in the 

data and the fact that clouds are spatially continuous and highly dynamic entities. In traditional approaches, similar 

spectral properties of snow and cloud in shorter wavelength regions pose problems in accurate snow cover mapping and 

cloud masking. The present study proposes four encoder-decoder based convolutional neural networks (CNNs) for 

segmentation of Advanced Wide Field Sensor (AWiFS) optical data into four classes i.e. cloud, cloud shadow, snow 

and other features. The proposed CNNs have seven convolutional layers in encoding path and six convolutional layers 

in decoding path. Each CNN was tuned using simple grid search and trained with an average accuracy and loss of 0.96 

and 0.02, respectively. The pixel-wise probability for each class was generated from the tuned CNNs using unseen data. 

The class assignment to each pixel was done by normalizing the probabilities from the CNN. For every pixel, the class 

having maximum normalized probability was said to be the class type of that particular pixel. The final output was 

compared with the outputs from a Random Forest (RF) Classifier and a self-digitized output. The deep learning model 

performed better than RF classifier, as the average accuracy values of 94% and 90% were achieved by the deep learning 

model and RF classifier, respectively. The proposed model can be used for cloud masking and snow cover mapping 

with higher accuracy and more robustness than other conventional methods over the AWiFS data. 
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1. Introduction 

 

Cloud along with cloud shadow in optical multispectral 

remote sensing images limits the applicability of the 

imagery causing problems in extraction of useful 

information and increase the error due to 

misclassification of features. Cloud cover causes the 

spatio-temporal discontinuity and hinders the application 

of time-series satellite images (Li et al., 2019). Cloud 

cover hinders the representation of actual surface features 

in the remote sensing data. In all applications of optical 

remote sensing, data with less percentage of cloud cover 

is preferred. Due to the high probability of presence of 

cloud in an optical data, automatic masking of cloud 

pixels in the data is considered as an important 

preprocessing step (Wu et al., 2018). Therefore, cloud 

detection and masking is one of the key problems in 

usage of optical images. Accurate identification and 

removal of clouds is necessary to reduce the negative 

impact of clouds on image applications. Another major 

problem is that cloud and snow has similar spectral 

reflectance, which makes segmentation of snow from 

cloud a difficult task. Snow and cloud have similar 

reflectance values in the lower wavelength region; but in 

higher wavelength regions (>1.5μm), cloud shows higher 

reflectance value as compared to snow. This property of 

cloud and snow has been traditionally exploited in order 

to separate snow and cloud in an optical imagery. 

 

There has been growing interest in using Artificial Neural 

Networks, and specifically Convolutional Neural 

Networks, which forms the basis of Deep Learning 

models. These can perform efficient feature detection and 

are of much use in the field of Remote Sensing (Ma et al., 

2019). Deep Learning models (networks) are composed 

of many layers that transform input data (e.g. images) to 

outputs (e.g., categories) while learning progressively the 

higher level features. The higher computational 

complexity that they involve is often ignored to achieve 

accurate results over large datasets. Image classification 

using deep learning began with AlexNet in 2012 and 

various advancements viz. ResNet, GoogleNet, etc. were 

available in open domain. Several experiments were 

conducted to use variants of these deep learning 

techniques for the purpose of cloud detection in remote 

sensing data sets, such as, Mateo-Garcia et al. (2017), Xie 

et al. (2017), Li et al. (2018), Tuia et al. (2018), Varshney 

et al. (2018), Zhang et al. (2018), Jeppesen et al. (2019) 

and Varshney et al. (2019). For creating image segments, 

a network is fed with an image and a corresponding set of 

pre-labeled pixels. Once the network learns attributes 

such as texture, tone and spatial correlation of the labeled 

pixels, it can classify the rest of the unlabeled pixels with 

this information. Such a trained network can then be used 

on an entirely new image, in order to classify it.  

 

The current work aims to use the spectral information of 

visible, near infrared and shortwave infrared information 

of optical satellite image in order to segregate clouds 

from snow effectively. The purpose of this work is to 

build a robust neural network architecture especially 

designed for cloud, cloud shadow and snow detection and 

segmentation; in complex terrain and illumination 

conditions.  
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2. Data used 

 

The dataset used in this study was of Advanced Wide 

Field Sensor (AWiFS) of Resourcesat – 2 satellite from 

the Indian Remote Sensing program. AWiFS acquire data 

in 4 wavelength ranges i.e. green (0.52 to 0.59 𝜇m), red 

(0.62 to 0.68 𝜇m), near infrared (0.77 to 0.86 𝜇m) and 

short-wave infrared (1.55 to 1.7 𝜇m) with spatial  

resolution 56m each (Table 1). The revisit period is 5 

days and the radiometric resolution is 12 bits. The raster 

data of each scene comprised of around 17000 rows and 

15000 columns. Due to the high spectral and temporal 

resolution, AWiFS data has been the pivot for various 

remote sensing applications such as land-use land-cover 

classification (Kandrika & Roy, 2008; Panigrahy et al., 

2009; Haldar & Patnaik, 2010; Punia et al., 2011), 

domain specific studies in water resources (Kulkarni et 

al., 2006; Rajawat et al., 2007; Raju et al., 2008; 

Subramaniam et al., 2011; Karri et al., 2016) and disaster 

management (Bahuguna et al., 2008; Calle et al., 2008; 

Das et al., 2017). AWiFS data of northern part of India 

during mid-monsoon season was considered in the study 

as the presence of snow and cloud could be seen together. 

A representation of green band and SWIR band is shown 

in Figure 1 along with the marked portions of snow, 

cloud and other features to demonstrate the difference in 

spectral properties of the features in the two different 

bands. 

 

The green band is useful to differentiate vegetation 

features from the snow and cloud features as snow and 

cloud features have high reflectance compared to other 

features. The short-wave infrared (SWIR) band is useful 

to differentiate snow from cloud and vegetation as snow 

has low reflectance in SWIR region. By using simple 

thresholding, the snow and cloud features can be 

separated from other features, heuristically, to get the 

primary mask for preparation of training data.  

 

3. Methodology 

 

The flowchart for general workflow of the proposed 

cloud segmentation method with three parts i.e., training 

data setup, deep learning model and model evaluation is 

visualized in Figure 2. 

 

3.1 Training Data Setup 

The accuracy of deep learning models depends upon the 

availability of good training samples. In this study, 

sample size of 512 × 512 is considered. The segmentation 

operation is carried out for four classes viz. cloud, cloud 

shadow, snow and other features. The image from the 

green channel (Band - 2) was classified into two different 

brightness value ranges separating cloud and snow from 

vegetation by visually considering the values of different 

features. A mask was generated by considering snow and 

cloud range as true and other range as false. The image 

from the SWIR channel (Band - 5) was classified into 

two different brightness value ranges separating snow 

from cloud and other features. A mask was generated by 

considering the snow range as true and the other as false. 

The common pixels from the two masks were extracted 

as cloud features. Snow and other feature masks were 

generated by removing the cloud pixels from the first and 

second masks, respectively. The above operations gave 

the preliminary segmentation of different features in the 

image. The preliminary segmentation output was then 

refined manually and the final segmentation images were 

generated. The segmentation mask had values 1, 2, 3 and 

4 for features cloud, cloud shadow, snow and other 

features, respectively. The above process was performed 

for five different scenes of AWiFS. 

 

  

 
Figure 1. Green band (on left) and SWIR band (on right) with difference in spectral properties of snow, cloud 

and other features 
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Figure 2. Flowchart of the methodology 

 

Table 1. List of AWiFS images used in the present study  

Sr. No Satellite/Sensor Row/Path Date of Pass 

1 Resourcesat-2 / AWiFS 97/48 09/10/2014 

2 Resourcesat-2 / AWiFS 97/48 20/12/2014 

3 Resourcesat-2 / AWiFS 97/48 06/02/2015 

4 Resourcesat-2 / AWiFS 97/48 17/08/2015 

5 Resourcesat-2 / AWiFS 97/48 28/10/2015 

 

Random 512 × 512 pixel blocks (or samples) were 

clipped from all the images from the composite and the 

segmentation mask. Random samples having all the four 

classes were only considered for the training set. Finally, 

the training set contained 30% samples having maximum 

pixels as cloud, 30% samples having maximum pixels as 

snow, 20% samples having maximum pixels as cloud 

shadow and 20% samples having maximum pixels as 

other features. 154 numbers of training samples were 

hence selected, out of which 70% (108 blocks) were used 

for model training and remaining 30% (46 blocks) were 

used for accuracy assessment of the model outputs. Four 

different masks for four different classes were generated 

for each training sample by assigning the class value as 

true and the other class values as false. A sample training 

composite along with the masks is shown in Figure 3. 

The 4-band composite was used as the feature set and the 

four generated masks were used as the label dataset. 

 

 

 
Figure 3. Sample training data set (a) FCC, (b) Mask for cloud, (c) Mask for cloud shadow, (d) Mask for snow, 

(e) Mask for other features, (f) Mask combining all classes 
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3.2 Model Architecture 

Deep Learning (Goodfellow et al., 2016) has been 

popular for CNN based image classification tasks. 

Recently, U-Net (Ronneberger et al. 2015) based remote 

sensing image classification applications have proved to 

be better than other algorithms. Current studies such as 

forest type mapping (Wagner et al., 2019), building non-

building mapping (Huang et al., 2018) and cloud snow 

mapping (Varshney et al., 2019) have provided impetus 

on use of customised U-Net architecture in the field of 

image segmentation  for mapping or identification of a 

specific type of feature in the remote sensing data. Image 

segmentation is a special deep learning problem as the 

dimensions of the input data is equal to the dimension of 

output segmented data with the depth being unity. 

Among many image segmentation algorithms, encoder-

decoder (U-Net) based models have been widely used in 

the last decade. The primary aim of encoder-decoder 

model was to take an input and provide an output with 

only the important features preserved. The encoder part 

of the model divides the input into smaller chunks with 

only important features and the decoder model can 

recreate the original input using these chunks with high 

accuracy. Image segmentation is conceptually similar to 

encoder-decoder based models. The multi-band input 

images are reduced to smaller chunks using encoders and 

the segmentation map is recreated using the decoder part 

preserving only the important features that can identify a 

specific type of feature. The proposed cloud segmentation 

model is based on the U-Net, an encoder-decoder model. 

This model has been widely used for medical image 

segmentation due to its ability to provide better accuracy 

in relatively less training data as compared to other 

segmentation deep learning models (Wagner et al., 2019).    

 

In the current case, as the AWiFS input image contains 4 

spectral 4 bands and the segmented image would contain 

a single band, the input image must be reduced to 

represent information as in a single band image. The 

reduction process should be such that for each feature, the 

band which represents that feature relatively well should 

only be considered, as seen in case of methods such as 

Principle Component Analysis. The reduction process in 

this context would be similar to encoding where the input 

data is separated into smaller chunks with increased 

width by the application of successive convolutions using 

CNNs. The reduced chunks by the model can be 

compared to the training label in order to train the model 

by adjusting the weights and biases using a proper 

optimizer. In the process of encoding, the spatial 

information of the features is lost because of the 

successive reduction in dimension. To build the output 

segmented image with proper dimensions, a decoder 

model recreates the output using these smaller chunks in 

successive transposed convolutions using CNNs. A 

schematic diagram of the proposed model is shown in 

Figure 4. 

 

 

 

 
Figure 4. Schematic diagram of proposed network structure 
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The encoder path gradually reduced the size of the image 

while the depth was gradually increased starting from 

512×512×4 to 8×8×1024. By using the encoder path, the 

network learnt the “WHAT” information in the image, 

however it lost the “WHERE” information. The decoder 

path gradually increased the size of the image while the 

depth was gradually reduced starting from 8×8×1024 to 

512×512×1. By using the decoder path, the network 

recovered the “WHERE” information by gradual 

application of transposed convolutions and up-sampling. 

To get precise locations, at every step of the decoder 

path, skip connections were used by concatenating the 

output of the transposed convolution layers with the 

feature map from the encoder at the same level. After 

every concatenation, two consecutive regular 

convolutions were applied again so that the network 

could learn to assemble a more precise output. The output 

would be probabilities of each pixel belonging to a 

particular class. On a high level, the network has the 

relationship: Input (512×512×4) →Encoder → 8×8×1024 

→ Decoder → Output (512×512×1). The entire 

architecture, as represented in Figure 5 was written in 

Python 3.7 using Tensorflow version 1.1 which is the 

industry standard for deep learning models. With the 

following system configuration, training each model took 

~18 minutes and prediction for each class took ~15 

seconds each.  

 

GPU: 12GB GDDR5 K80 

CPU: Single core Xeon Processors @2.3Ghz RAM: ~20 

GB  

 

The original scene having dimensions of around 

17000×15000 were then divided into smaller images of 

dimension 512×512 and the deep learning model was 

used to generate a segmentation map. Every segmentation 

output was stitched back to the original dimension to 

obtain the final result. Accuracy Assessment was 

conducted in order to evaluate effectiveness and the 

capability of the proposed methodology to correctly 

classify different classes. The model architecture 

described above was deployed separately for four classes 

(cloud, cloud shadow, snow and other features); hereafter 

referred to as four models 

 

The four models, each for each class were first structured 

and the training (70%) – testing (30%) dataset for each 

class was prepared. In order to regularize the model and 

to avoid the over-fitting condition, dropouts and batch 

normalization processes were added to the structure. In 

order to optimize the model and to get better accuracy, 

the hyper-parameters such as kernel size, activation 

function, optimization algorithm and dropout rate were 

tuned by implementing a simple grid search. Grid search 

works by implementing a defined set of hyper-parameter 

combinations and obtaining the parameter combination 

having maximum efficiency in an experimental setup.  

 

The parameters after the tuning process were 

implemented on the deep learning models and were 

trained for 200 epochs each using the composite as 

feature data and the class mask as the label data. The 

accuracy and root-mean-square loss were calculated for 

each epoch taking 30% of the training set as validation 

set. The output probability map generated was then 

combined using pixel-by-pixel approach. For each pixel, 

the probability of four classes was normalized, and the 

class which had the maximum probability was assigned 

to the pixel. The model implementation workflow used in 

this work is shown in Figure 6. 

.

  

 
Figure 5. Final model architecture 
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Figure 6. Model Implementation Workflow 

 

3.3 Random Forest 

The Random Forest (RF) based semantic image 

segmentation was also implemented for the sake of 

comparison with the proposed deep learning model. RF 

models are based on decision tree algorithms with 

improvements made to reduce the errors due to over-

fitting. RF models introduce training time randomness 

into the trees and outputs of such randomized trees are 

combined into a single classifier. These randomness 

essentially works as a negative factor for model 

convergence and regularizes the model to provide 

accurate outputs. Schroff  et al. (2008), Bosch et al. 

(2007) and Yin et al. (2007) demonstrated that RF 

generated lower test errors as compared to conventional 

decision trees and other image segmentation methods 

such as Support Vector Machines (SVMs).  Moreover, 

RF models are considered straightforward and efficient 

owing to its sampling approach (Drönner et al., 2018). 

 

Following the same methods for training of the deep 

learning model, same training and testing data were used 

for the RF model. The outputs of the RF model were 

subjected to evaluation in order to tune the model.  

 

3.4 Accuracy Assessment 

In order to compare the model performance with the 

existing methods of classification, a random forest model 

was trained using the same training data which was used 

to train the deep learning model. To assess the accuracy 

of the model, both random forest and deep learning 

model was implemented to generate classification outputs 

on an unseen data. The unseen data was then hand 

digitized and was compared with the outputs from both 

random forest and deep learning models. Overall 

accuracy was calculated for both the cases. 

4. Results 

 

The initial model was iteratively trained using different 

combinations of defined hyper-parameters and the 

combination that showed highest performance efficiency 

is chosen. The different categories of hyper-parameters, 

which were explored and their efficiency is shown in 

Figure 7. 

 

The results from grid search were considered and the 

existing models were fine tuned to form final models 

which were trained separately for each class. During the 

training, all the models were evaluated and the 

performance of the model was monitored using the 

Tensorboard interface. In this study, model accuracy and 

loss were used as the performance indices for training the 

deep learning models which are depicted in Figure 8. The 

final models were implemented on the test dataset to find 

probability map of each class. The probability values 

were normalized and the class having maximum 

probability value was selected in the final segmentation 

map. Figure 9 depicts the output obtained by using four 

models on the given input data. Accuracy assessment was 

performed using unseen data samples where each sample 

had thin and thick clouds over snow and land features so 

as to see the model performance to detect the clouds in 

the extreme conditions possible. The results of the 

assessment is shown in Table - 2. The comparative 

analysis of results of deep learning model with self-

digitized reference data and with the output of RF are 

shown in Figure 10 and Table-3. 
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Figure 7. Simple grid search results for finding optimum (a) optimization algorithm, (b) activation function, (c) 

dropout rate and (d) kernel size 

 
Figure 8. Model Evaluation Indices: Accuracy (on top), Loss (on bottom) 
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Figure 9. (a) Input test data, (b) to (e) Output probability map of cloud, cloud shadow, snow and other features 

respectively (brighter color represents higher value) 

 

Table 2. Confusion matrix for the Deep Learning Model 

 Cloud Cloud Shadow Snow Other 

Cloud 200078 56 1425 914 

Cloud Shadow 1244 12797 1139 1142 

Snow 4602 273 24963 6 

Other 4371 515 15 8604 
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Figure 10. Sample accuracy assessment results 

 

Table 3. Overall Accuracy of Random Forest Classifier and Deep Learning Model 

Class 

Overall Accuracy (in percentage) 

Random Forest Classifier Deep learning Model 

Snow 87.49 93.06 

Cloud 88.95 93.29 

Cloud shadow 93.46 94.41 

Other features 93.16 95.00 

 
5. Discussions 

 

The proposed deep learning model was implemented 

using Tensorflow 2.x and the input data processing was 

performed using Python scripts. The training and testing 

dataset were annotated using AWiFS multispectral data 

by utilizing the spectral differences between the required 

feature classes. Even though such thresholding approach 

could separate the snow and cloud cover features, in most 

cases the approach falls short due to similar spectral 

behavior of snow and cloud cover and requires human 

intervention for accurate segmentation. The current work 

aimed towards development of a deep learning image 

segmentation model based on the U-Net architecture 

which could automate the segmentation process with 

optimum accuracy. U-Net architecture was considered 

due to its capability to perform optimally even with 

smaller training datasets. The model was structured and 

tuned for different combinations of hyper-parameters so 

as to prepare a model which was better fit to the given 
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dataset. The tuning ensured that the best parameter set 

was used to structure the model. However, measures were 

considered while training of the model to prevent model 

overfitting such as regularization layers and comparison 

of test and train accuracy. Four different models were 

trained for the required features and the output of each 

model was combined using a simple probability 

normalization approach where the prior probability of the 

pixels being any particular class was multiplied to the 

likelihood to calculate the posterior probability. The final 

model output showed an overall accuracy of around 94%. 

As a model for comparison, a random forest model was 

trained using the same training dataset and the same 

samples were used for testing the model performance. For 

the same unseen samples, the comparison of the overall 

accuracies from the deep learning model and RF model 

showed that the deep learning model was able to perform 

image segmentation with higher accuracy. The accuracy 

of the deep learning model was also found to perform 

consistently well with different case scenarios. The deep 

learning models were found to overcome the need of the 

manual interventions required in heuristic approaches. 

Along with providing a cloud mask, this methodology 

can also be helpful to the organizations that provide earth 

observation data to estimate and specify the percentage 

cloud cover present in the metadata. 

 

As the deep learning model was implemented in 

Tensorflow, the model was scalable for larger training 

datasets. However, one drawback of the model can be the 

fixed size of input files. Due to the fixed input size, the 

original AWiFS scenes has to be divided into smaller 

arrays with dimensions as required for the model to be 

passed through the model. The outputs generated from 

the model has to be stitched to the original dimension. 

This could significantly increase the time required for 

segmentation of an entire scene. However, the time could 

be reduced by changing the input file dimension of the 

model to a larger size. The time consumption can be 

further reduced by using a system with higher 

computational power such as High Performance Clusters 

(HPCs). The number of blocks/training datasets used in 

the present study, were found to be sufficient for the 

current study area, however, for global application of this 

model the number of training samples may need to be 

increased. 

In the present study the four single class classifiers have 

been used; however the effect of using a single multi-

class classifier for task can be explored as a future study. 

The accuracy assessment of the present model is done 

using self-digitized reference datasets and classified 

outputs of RF model. The performance of present deep 

learning model was observed to be satisfactory with 

respect of RF. However, cross-validation can also be 

performed using classified outputs of different ML 

algorithms and other techniques such as semantic 

segmentation, object-based image classification, textural 

classification, etc. implemented on the same study area.  

 

6. Conclusions 

 

The study proposed a deep learning network model for 

multi-class segmentation of AWiFS scenes into four 

classes i.e. cloud, cloud shadow, snow and other features 

in order to replace the manual, conventional processes of 

cloud masking. The models were structured and the best 

hyper-parameter combinations were chosen using simple 

grid search. The accuracy assessment of the combined 

segmentation results generated by the four models 

showed that the deep learning model performs better than 

the random forest classifier trained on the same dataset 

with an overall accuracy of around 94%. The proposed 

model could better identify the cloud features from snow 

features. In multiple cases, Random forest classifier failed 

to detect the thin clouds whereas the deep learning model 

could correctly detect cloud in such cases. Each model 

took around 18 minutes to train and around 15 seconds to 

predict on an unseen data. The output from the model can 

be further used to generate cloud masks and snow 

products. The deep learning model can also be extended 

to be used in data from other sensors such as Linear 

Imaging Self Scanning (LISS) – III. Although the deep 

learning model lacked in some measures, such as 

misclassifying thin clouds, this could be rectified by 

increasing the training sample, deeper encoder-decoder 

network and higher computational power. 
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