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Abstract: This paper demonstrates how to predict land use and land cover change and focused on Makurdi Local 

Government Area precisely. The study investigates the spatio-temporal variations in land cover in Makurdi local 

government area within periods: 1991, 2001, 2013, and 2020. Additionally, the future scenario of land cover was predicted 

for the year 2030. The land cover classification was done using the Maximum likelihood classifier in the ENVI 5.3 

software environment while the prediction was implemented with the Cellular Automata (CA) Markov chain modelling 

tool in Idrisi TerrSet 18.31 software. Results shows between 1991 and 2020, that the natural environment such as dense 

vegetation, water body and wetland resources have been threatened due to the drastic reduction of 55.02km2 (89.70%) 

loss, 0.03km2 (11%) loss and 13.15km2 (56.54%) loss respectively, The social environment- built up area, barren land 

and agricultural land have expanded by 37.10km2 (381.00%) gain, 5.24km2, (42.54%) gain and 25.96km2 (3.69%) gain 

respectively. The explanation for this outcome could be connected to the rise in human population which has increased 

the demand for agricultural land, infrastructural development, and housing. The study was able to successfully project the 

land use/cover for 2030 using the CA Markov chain model. 
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1. Introduction 

 

Land use and cover changes (LUCCs) are among the most 

important changes on the land surface which have 

considerable influence on the environment and 

environmental processes. Thus, LUCCs are recognized as 

the main driving force of the global ecosystem change 

(Behera et al., 2012; Zhang et al., 2015). The urban 

populations in most developing countries have grown by 

40% between 1900 and 1975. According to them, the trend 

will continue adding approximately 2 billion people to the 

urban population of the presently less-developed nations 

for the next 30 years. In similar way, Arnfield observed 

that the world is becoming increasingly urbanized with 

(45%) of the population already living in the urban areas 

in the year 2000. He projected half of the world living in 

urban areas by 2007. It was further estimated that by the 

year 2025, (60%) of the world’s population will live in 

cities. The demand for land cover data has rapidly 

increased over the years as an indispensable means of 

planning and implementation of developmental projects. 

Land cover (LC) data are important for planners, policy 

makers, and land resource management stakeholders 

(Ezeomedo et al., 2013). Therefore, accurate and up-to-

date land cover change information is necessary for 

understanding the trend of changes and futuristic 

extrapolations (Hamad et al., 2018). Remote sensing (RS) 

and geographic information system (GIS) are essential 

tools used to obtain accurate and timely spatial data of land 

use and land cover, as well as analysing the changes in a 

study area. Remote sensing images can effectively record 

land cover situations and provide an excellent source of 

data, from which updated land cover information and 

modifications can be extracted, analysed, and simulated 

efficiently through specific means. Therefore, remote 

sensing is widely used in the detection and monitoring of 

land cover at different scales. The Markov chain and 

Cellular Automata (CA-Markov) model, a mixed model, is 

the hybrid of the Cellular Automata and Markov models. 

This model effectively combines the advantages of the 

long-term predictions of the Markov model and the ability 

of the Cellular Automata (CA) model to simulate the 

spatial variation in a complex system and this mixed model 

can effectively simulate land cover change. Therefore, this 

study will monitor and predict land cover changes in the 

Makurdi LG using the CA-Markov Chain technique. 

 

1.1 Aim and objectives of the work 

The aim of this study is to determine the LULC changes 

over time in Makurdi for future effective planning. The 

objectives are as follows: 

1. Acquisition of multitemporal Landsat imageries at four 

years (1991, 2001, 2013 and 2020). 

2. Land use /land cover extraction using the maximum 

likelihood classifier on ENVI software.. 

3. Assessments of land use/ land cover changes between 

1991 and 2020. 

4. Predicting future land use/land cover change scenario 

for 2030 using the Cellular automata and Markov chain 

model. 

 

1.2 Study area 

Makurdi town, the capital of Benue state lies between 

latitudes 7⁰ 37″ and 7⁰ 47″ North of the equator, and 

between longitudes 8⁰ 28″ and 8⁰ 40″ East of the 

Greenwich Meridien. 

 

Figure 1 shows the map of Makurdi Local Government 

Area. The town is situated astride River Benue in North 

central Nigeria, about 300 kilometres south of Jos and 450 

kilometres from Enugu in the South. The city of Makurdi 

as currently defined politically, covers a radius of 10 

kilometres. The city stretches from the Nigerian Airforce 

base in the East along Gboko road to Adaka village along 

Ankpa road in the West. In the South it is bounded by Apir 

village while in the North it is bounded by Agan Toll gate. 
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The River Benue traverses through the town from the 

Northeast to the Northwest thereby bifurcating it into two 

major parts: - the northern and southern parts known 

commonly as North bank and South bank districts. 

 

Makurdi town lies in the gently rolling lowland fertile 

alluvial plains of the Benue River in the Guinea Savannah 

vegetation belt that consists of vast wetlands and Marshes 

that are intermittently punctuated with tributary stream 

channels. The city is therefore surrounded by vast fertile 

agricultural lands that are the hub of production of myriads 

of agricultural crops. Consequently, agriculture is the 

mainstay of the local economy and the main supplier of 

nutritional needs of the local population, the city and the 

entire country. 

 

1.3 Significance of the study 

The study of land use change referred to as change 

detection and the growth of urban centres have gained 

prominence in the recent years. This is partly due to the 

fact that there is an increasing need for proper land use 

planning to control various urban problems. Remote 

sensing techniques are of immense practical use for 

resources evolution and environmental. In fact, it has 

emerged as the most efficient and effective way to obtain 

large amounts of timely accurate information about terrain. 

Urban land use change monitoring compared, using high-

resolution remote sensing technology to monitor more 

efficient time saving, saving a lot of manpower, material 

resources and time, improve the urban land use database 

building and database and update efficiency. The growth 

of city without planning will lead to create many complex 

urban problems. This study aspires to locate specific 

pattern of development in the process of urbanization so 

that conclusions can be used to predict future change 

scenarios. The result of this research will be informative to 

urban planners and government for sustainable decisions.

 
Figure 1. Map showing Makurdi Local Government Area 

1.4 Land Use and Land Cover Change 
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Land use and land cover are essential components in 

understanding the interaction between human activities 

and the environment. According to (Abbas et al., 2010), 

The terms “land use” and “land cover” are often 

interchanged. United Nations Food and Agricultural 

Organization (UNFAO) (1997) define land use as “the 

total of all arrangements, activities, and inputs that people 

undertake in a certain land cover type.” Land cover “is the 

observed physical and biological cover of the earth’s land 

as vegetation, rocks, water body or man-made features.” 

Liping et al., (2018) define land cover as the biophysical 

characteristics of the earth’s surface, including the 

distribution of vegetation, water, soil, and other physical 

features of the land. Land use refers to how humans and 

their habitat have used land. In general, land cover is the 

physical covering of the earth, such as vegetation, soil, 

water, while land use is how humans have modified land 

to suit their needs.  

 

Land use affects land cover, and changes in land cover 

affect land use. Changes in land cover by land use do not 

necessarily imply the degradation of the land (Rawat et al., 

2015). However, changes in land use driven by various 

socioeconomic, demographic, political, and industrial 

causes would result in degradation in ecosystem services. 

Li et al., (2016) state that to understand the human and 

biophysical processes of land use and land cover changes 

(LUCC), researchers focused on the various forces driving 

LUCC. These drivers include socioeconomic, 

demographic, political, technological, biophysical, and 

industrial provide adequate support for developing urban 

land planning and management regulations. 

 

Researchers have studied land cover in different areas by 

using different methods to detect land cover change. 

Lambin (1997) reviewed the various methods used to 

detect land cover change. Similarly, Parker et al., (2003) 

reviewed multi-agent systems for the simulation of land-

use and land-cover change. The review aimed to give 

insight into how multi-agent models can overcome the 

limitations of the existing models in land cover studies. 

Rawat et al., (2015), monitored land use and land cover 

change using remotes sensing and GIS techniques: A case 

study of Hawalbagh block, district Almora, Uttarakhand, 

India. The study highlights the importance of digital 

change detection techniques for nature and location of 

change of the Hawalbagh block. Similarly, Ashaolu et al., 

(2019) assessed the spatio-temporal pattern of land use and 

land cover change in Osun drainage basin. The result 

underscored the increasing anthropogenic activities in the 

basin that influenced recharge rate, surface runoff, 

incidences of soil erosion, etc., in Osun drainage basin. 

Some authors that have studied land use and land cover at 

different levels include Brown et al. (2012), Kumar, et al., 

(2014), Lillesand, et al., (2004),  Subedi, et al., (2013).  

 

1.5 Land Cover Classification Schemes 

For many years, agencies at the various governmental 

levels have been collecting data about land, but for the 

most part they have worked independently and without 

coordination. Too often this has meant duplication of 

effort, or it has been found that data collected for a specific 

purpose were of little or no value for a similar purpose only 

a short time later. The need of Federal agencies to have a 

standardised land use and land cover pattern led to the 

formation of an Interagency Steering Committee on Land 

Use Information and Classification early in 1971. The 

objective of the committee was the development of a 

national classification system that would be receptive to 

inputs of data· from both conventional sources and remote 

sensors on high-altitude aircraft and satellite platforms, 

and that would at the same time form the framework into 

which the categories of more detailed land use studies by 

regional, State, and local agencies could be fitted and 

aggregated upward from Level IV toward Level I for more 

generalized smaller scale use at the national level.  

Anderson 1971 is of the opinion that there is no one ideal 

classification of land use and land cover, and it is unlikely 

that one could ever be developed. He states that since land 

use and land cover is constantly changing there is no 

logical reason why inventory of land use and land cover 

should remain the same. Furthermore, each classification 

is made to suit the needs of the user, and few users will be 

satisfied with an inventory that does not meet most of their 

needs (Verburg et al., 2006). In attempting to develop a 

classification system for use with remote sensing 

techniques that will provide a framework to satisfy the 

needs of the majority of users, certain guidelines of criteria 

for evaluation must first he established. 

 

A land use and land cover classification system which can 

effectively employ orbital and high-altitude remote sensor 

data should meet the following criteria (Anderson 1971): 

 

 The minimum level of interpretation of accuracy in the 

identification of land use and land cover categories 

from remote sensor data should be at least 85 percent. 

 The accuracy of interpretation for the several 

categories should be about equal. 

 Repeatable or repetitive results should be obtainable 

from one interpreter to another and from one time of 

sensing to another. 

 The classification system should be applicable over 

extensive areas. 

 The categorization should permit vegetation and other 

types of land cover to be used as surrogates for activity. 

 The classification system should be suitable for use 

with remote sensor data obtained at different times of 

the year. 

 Effective use of subcategories that can be obtained 

from ground surveys or from the use of larger scale or 

enhanced remote sensor data should be possible. 

 Aggregation of categories must be possible. 

 Comparison with future land use data should be 

possible. 

 Multiple uses of land should be recognized when 

possible. 

 

The multilevel land use and land cover classification 

system described in Anderson (1971) has been developed 

because different sensors will provide data at a range of 

resolutions dependent upon altitude and scale. In general, 

the following relations pertain, assuming a 6-inch focal 

length camera is used in obtaining aircraft imagery. 
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An attempt has been made to include sufficient detail in 

the definitions presented here to provide a general 

understanding of what is included in each category at 

Levels I and II. Many of the uses described in detail will 

not be detectable on small-scale aerial photographs. 

However, the detail will aid in the interpretation process, 

and the additional information will be useful to those who 

have large-scale aerial photographs and other 

supplemental information available. The land cover 

classes as used in this study (Anderson, 1971; 

Omogunloye et al., 2012), are defined as follows: 

 

 Urban or Built-up Land: This comprises areas of 

intensive use with much of the land covered by 

structures 

 Agricultural Land: This may be defined broadly as 

land used primarily for production of food and fibre. 

 Rangeland: Rangeland historically has been defined 

as land where the potential natural vegetation is 

predominantly grasses, grass-like plants, forbs, or 

shrubs and where natural herbivory was an important 

influence in its precivilization state.  

 Forest Land: Forest Lands have a tree-crown areal 

density (crown closure percentage) of 10 percent or 

more, are stocked with trees capable of producing 

timber or other wood products and exert an influence 

on the climate or water regime 

 Water: The delineation- of water areas depends on the 

scale of data presentation and the scale and resolution 

characteristics of the remote sensor data used for 

interpretation of land use and land cover. 

 Wetland: wetlands are those areas where the water 

table is at, near, or above the land surface for a 

significant part of most years 

 Barren Land: Barren Land is land of limited ability to 

support life and in which less than one-third of the area 

has vegetation or other cover. In general, it is an area 

of thin soil, sand, or rocks.  

 

Cellular Automata Markov Chain for Land Cover 

Prediction: Modelling of land use and land cover is a 

scientific field that is growing rapidly because of its 

importance in identifying the effects of the humans on the 

environment. In view of this importance, scientists have 

constituted an international organization named Land use 

and Cover Change (LUCC) organization that is connected 

with the International Geosphere Biosphere Program and 

the International Human Dimensions of Global Change 

Program (Pontius & Chen, 2006). Furthermore, many 

algorithms and methods have been developed for 

modelling land use and cover. 
 

One of the approaches that have been developed for 

forecasting Land use/ Land cover (LULC) is Cellular 

Automata (CA) which is defined as a dynamical discrete 

system in space and time that works by specific rules on a 

uniform grid-based space (Obiefuna et al., 2013; Odunuga 

et al., 2007) . CA involves cells and transition rules that 

are used to identify the state of a certain cell. It is especially 

interesting for land use and land cover modelling because 

of its ability to represent a complex system by a small set 

of rules and states with spatio-temporal behaviour (Hadi, 

et al., 2014). CA was successfully compiled in one of the 

models in the IDRISI software that, hence, gives this 

model power and easiness for performing modelling 

LULC. CA Markov is a model in the IDRISI software. 

This model is a powerful tool for modelling and predicting 

land use and land cover change. It is a methodology that 

has been used widely in LULC modelling as it takes into 

consideration spatial interaction and stimulates multi 

LULC types. In this research, an approach of detecting the 

change and predicting the change of a specific year is 

applied. This approach is an integrated method of remote 

sensing, GIS, and modelling (CA method), as the RS and 

GIS is used for detecting the change and providing basis 

data for CA model, the latter is used to predict the future 

LULC map. 

 

The Markov model is often used in monitoring, ecological 

modelling, simulation changes, trends of the LULC and to 

predict the amount of the land use change and the stability 

of future land development in the area of interest (Parsa, et 

al., 2016; Weng, 2002; Subedi, et al., 2013). Equation (1.0) 

explains the calculation of the prediction of land use 

changes (Kumar, et al., 2014) 

 

𝑺 (𝒕, 𝒕 +  𝟏)  =  𝑷𝒊𝒋  × 𝑺 (𝒕) -- (1) 

 

Where S (t) is the system status at time of t, S (t + 1) is the 

system status at time of t + 1; Pij is the transition 

probability matrix in a state which is calculated in 

Equations (2.0 and 2.1) respectively: 

 

‖𝑷𝒊𝒋‖ = ‖

𝑷𝟏,𝟏  𝑷𝟏,𝟐 … … …  𝑷𝟏,𝑵

𝑷𝟐,𝟏  𝑷𝟐,𝟐 … … …  𝑷𝟐,𝑵

… … … … … … … … … .
𝑷𝑵,𝟏  𝑷𝑵,𝟐 … … …  𝑷𝑵,𝑵

‖ -- (2) 

Where (𝟎 ≤ 𝑷𝒊𝒋 ≤ 𝟏)  

 

P is the transition probability; Pij stands for the probability 

of converting from current state i to another state j in next 

time; 𝑷𝑵 is the state probability of any time. Low transition 

will have a probability near (0) and high transition have 

probabilities near (1) (Kumar, et al., 2014). 

 

Markov Chain determines exactly how much land would 

be estimated to change from the latest date to the predicted 

date. The transition probabilities file is the output in this 

process, which is a matrix that records the probability that 

each land cover class will change to every other class. 

Through the Markov chain modelling, the analysis of two 

different dates of the LULC images induces the transition 

matrices, a transition area matrix and a set of conditional 

probability image (Hamad, et al., 2018). 

 

2. Methodology  

 

2.1 Software/Hardware Used 

The following software and hardware were used for this 

study: 

 Environment for Visualizing Images (ENVI) 

classic version 5.3 was used for the classification 

of the Landsat imagery. 
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 ArcGIS version 10.3 was used for analysis, 

manipulation and presentation of data. 

 TerrSet version18.31 (IDRISI): was used to 

predict land cover change between the years 

under study. 

 Google earth served as ground truthing imaging 

for image interpretation. 

 

2.2  Data Acquisition 

The study used four years 1991, 2001, 2013 and 2020 

satellite imageries were downloaded from the United 

States Geological Survey USGS Earth Explorer portal 

shown in Table 1.  

 

2.3 Image Pre-processing 

Creation of Colour Composite: A false colour composite 

was created which is a combination of three raster images. 

In Landsat 4 TM, band 4 was assigned to red, band 3 to 

green and band 2 to blue (RBG432). The combination of 

this band produces a false colour composite where the 

vegetation is represented as dark red, crop as pink or red, 

built up as cyan, bare land/soil as white and water as blue 

or black; Landsat 7 ETM+ contains band 5 as red, band 4 

as green and band 3 as blue (RBG543) while in Landsat 

OLI/TIRS, band 6 was assigned to red plane, band 5 to 

green, and band 4 to blue plane (RGB654). In this false 

colour composite, vegetation is depicted as green, water in 

blue, bare soil in shades of brown and built-up areas in 

shades of purple. Each band was combined using Envi 

classic 5.3. 

 

2.4 Image Classification 

2.4.1 Selection of Classification Scheme 

The LULC classes were classified into the following six 

classes according to Anderson et al. (1976) classification 

scheme level 1: Water body, Built-up, Agricultural land, 

dense vegetation, wetland and barren land. See table 2. 

 

2.4.2 Supervised classification 
A Maximum Likelihood classification was executed for 

each image. This method assumes a normal distribution of 

DN (Digital Number) values, allowing the function to 

determine the probability of a pixel belonging to a specific 

feature class and assign each pixel to the highest 

probability class (Lillesand et al., 2004). Classifications 

were often repeated numerous times after additional 

training sites were added to achieve satisfactory results. 

Agricultural areas were occasionally classified as 

Wetlands, requiring additional polygons to be digitised to 

properly classify the image. 

 

2.4.3 Post classification 

The image classification was executed, and the output was 

set on to a post-classification also known as refinement 

stage. This operation is referred to as the clean-up 

operations. Before then, an accuracy assessment was 

conducted for all images. The classified image was 

exported as .TIF file and imported into the ArcGIS 

environment. The raster was converted to vector using the 

“Raster to Polygon tool” located in the “Conversion tool” 

in the ArcToolBox. 

 

2.4.4 Accuracy assessment 

In order to determine the level of accuracy of the 

classification workflow, a confusion matrix operation was 

performed and generated. The summary of the reliability 

and accuracy assessment of the classified satellite 

imageries are depicted in the next chapter. 

 

Overall accuracy =
Total number of correct classified points

Total number of points
×100  (3)       

 

Where, the Total number of correctly classified points is 

the number of points that have same class values from the 

classification output and the ground-truth. The Total 

number of points is the number of the random points 

created. 

 

 

Table 1. Data Collection Table 

S/N Dataset Path/Row Date No. of 

Bands 

Spatial 

resolution 

Format Source 

1 Landsat 4 TM 188/55 07/01/1991 7 30m GeoTIFF United States 

Geological 

Survey (USGS) 

 

2 Landsat 7 ETM+ 188/55 02/11/2001 8 30m GeoTIFF 

3 Landsat 8 OLI/TIRS 188/55 29/12/2013 11 30m GeoTIFF 

4 Landsat 8 OLI/TIRS 188/55 30/11/2020 11 30m GeoTIFF 

 

Table 2. Land cover classification scheme used 

S/N Class Description 

1 Water body Sea, rivers, ponds and a small lake 

2 Built-up Residential, commercial, and industrial areas, settlements, and transportation 

infrastructure 

3 Agricultural land Cropland and pasture fields, grassland, and fallow land 

4 Dense vegetation Areas dominated by natural trees, such including riparian forest 

5 Wetland Marsh or swamp 

6 Barren land Tilled farmland, sand-filled land, and rocky area 
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3. Results and analysis 

 

3.1 Temporal pattern of land use/cover between 1991 

and 2020 

As a result of the post-classification of land cover carried 

out on the study area, all the land cover classes experienced 

changes within the years considered, a period of 29 years 

(1991-2020). 

 

The negative values (Table 4) depict 10 years interval 

negative changes in the land use/cover classes that is, 

decrease in LULC classes. The positive values depict 

increase in LULC class. 

 

In Table 3, 1991 and 2001 of the agricultural land 

cover/use class occupied 703.47km2 and 703.95km2 which 

is (84%) and (84.45%) of land covering the study area. It 

further increased in 2013 and 2020 (Figure 2) to 

723.44km2 and 729.43km2 representing (86.79%) and 

(87.50%). As population increase, the demand for food 

equally increases resulting to food scarcity if not properly 

checked. The Federal Government of Nigeria has put in 

place various agricultural agencies to train farmers to 

improve and expand agriculture that can feed the growing 

population. 

 

 
Figure 2. Agricultural land distribution across the 

epochs 1991, 2001, 2013 and 2020 
 

Between 1991 and 2020 (Figure 3), the dense vegetation 

land cover/use class has reduced drastically from 

61.33km2 to 6.32km2. Research has shown that the study 

area is investing heavily into agriculture.  This results in 

the conversion of large area of dense vegetation into 

agriculture by government and private sectors. Also, as 

settlements increase, human activities move towards 

forested areas to create space for agriculture or more 

infrastructural development. 

 

In 1991 (Figure 4), barren land occupied 12.32 km2, which 

represented (1.48%) of the entire land of the study area. In 

2001 and 2013, there was a decrease in the area of barren 

land of 8.37 km2 and 9.20km2 which represents (8.37%) 

and (9.20%) respectively as against what it was in 1991. 

This can be attributed to agricultural activities in the area 

as the study area is known for its high agricultural 

activities. Over the period of 7years between 2013 and 

2020, the barren land had increased to 17.55km2, which 

represents (2.11%). This increase could have been due to 

the increased population in the urban settlements resulting 

in the construction of buildings and increased clearing for 

farming. 

Figure 3. Dense vegetation distribution across the 

epochs 
 

 
Figure 4. Barren land distribution across the epochs 

 

The built-up land cover/use class (Figure 5) occupied 

9.74km2 around 1991 which formed (1.17%) of the land 

covering the study area. In 2001, the land cover/use class 

had increased in area by 21.46km2 representing (2.57%) of 

the study area. In 2013, the land cover class increased by 

36.03km2 which is (4.32%) of the study area as it 

drastically increased to 49.84km2 in 2020. This can be 

explained by the increasing population growth between 

1991 and 2020. The obvious consequence of this 

population expansion on natural resources cannot be over 

emphasised. 

 

 
Figure 5. Built-up area distribution across the epochs 

 

The water-body (Figure 6) cover/use class, in 1991, 2013 

and 2020 occupied 23.38km2 23.79km2, and 23.36km2 

which formed (2.81%), (2.85%) and (2.80%) respectively 

of the land cover of the study area. In 2001, the land cover 

class had increased in area to about 35.68km2. The area of 
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the water-body in 1991, 2013 and 2020 appears very close 

to each other which could have been as a result of seasonal 

phenomenon while the area of water body in 2001 could 

be as a result of sand mining as it is an activity in the area. 

 

 
Figure 6. Water body distribution across the epochs 

 

In 1991, the wetland land cover/use class occupied 23.26 

km2 forming (2.79%) of land covering the study area 

(Figure 7). It drastically decreased between 2001 and 2013 

from 10.04km2 to 8.03km2 representing (1.20%) and 

(0.96%) respectively. In 2020, land cover/use increased by 

10.11km2. Cooper and Moore, 2003 states that wetlands 

play a key role in agriculture as certain crops thrive best in 

rich wetlands soils. 

 

The respective graphical views of the combine Land cover 

distribution across the epochs classes from 1991 to 2020 

in Table 3 and the Change detection among the classes in 

10yrs interval from 1991 to 2020 are shown in Figure 8 

and Figure 9.   

 

Figure 7. Wetland distribution across the epochs 
 

 

Table 3. Land use land cover distribution across epochs 1991, 2001, 2013 and 2020 

CLASS 1991 2001 2013 2020 

(Sq km) (%) (Sq km) (%) (Sq km) (%) (Sq km) (%) 

Agricultural land 703.47 84.40 703.95 84.45 723.44 86.79 729.43 87.50 

Barren land 12.32 1.48 8.37 1.00 9.20 1.10 17.55 2.11 

Built up 9.74 1.17 21.46 2.57 36.03 4.32 46.84 5.62 

Dense vegetation 61.33 7.36 54.07 6.49 33.09 3.97 6.32 0.76 

Water body 23.38 2.81 35.68 4.28 23.79 2.85 23.36 2.80 

Wetland 23.26 2.79 10.04 1.20 8.03 0.96 10.11 1.21 

Total 833.50 100.00 833.57 100.00 833.59 100.00 833.61 100.00 

 

Table 4. Change detection statistics 

CLASS 

1991-2001 2001-2013 2013-2020 1991-2020 

(Sq km) (%) (Sq km) (%) (Sq km) (%) 
(Sq 

km) 
(%) 

Agricultural land 0.48 0.07 19.49 2.77 5.99 0.83 25.96 3.69 

Barren land -3.95 -32.06 0.83 9.92 8.35 90.76 5.23 42.45 

Built up 11.72 120.33 14.57 67.89 10.81 30.00 37.10 380.90 

Dense vegetation -7.26 -11.84 -20.98 -38.80 -26.77 -80.90 -55.01 -89.70 

Water body 12.30 52.61 -11.89 -33.32 -0.43 -1.81 -0.02 -0.09 

Wetland -13.22 -56.84 -2.01 -20.02 2.08 25.90 -13.15 -56.53 

 

 

 
Figure 8. Showing combine Land cover distribution across the epochs classes from 1991 to 2020 
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Figure 9. Change detection among the classes in 10yrs interval from 1991 to 2020 

 

3.2 Spatial distribution of land use/cover between 

1991 and 2020 

From 1991 to 2020 (Figure 10a to 10d) there is a 

progressive increase in built-up areas. Dense vegetation 

diminishes as we progress through the years. Barren land 

is seen mostly within the river and in developing areas of 

settlements. Wetland is seen to be reducing as agricultural 

land increase across the years which could be as a result of 

conversion of wetland areas to agricultural usage whereas 

in 2030 projected year (Figure 11), there is tendency of 

having a massive development  and built-up activities that 

would negatively have an impact on natural environment.

 

 
Figure 10a. Makurdi LULC distribution in 1991 

 

 
Figure 10b. Makurdi LULC distribution in 2001 

 
Figure 10c. Makurdi LULC distribution in 2013 Figure 10d. Makurdi LULC distribution in 2020 
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3.3 Land cover modeling and prediction using the 

Markov chain algorithm 

The predicted land cover statistics are shown in Tables 5a, 

5b and 5c respectively. The land cover for 2030 was 

predicted based on 2013 and 2020 Land use/ cover 

classification layers. The Land cover prediction model was 

validated by predicting 2020 Land use/ cover based on 

2001 and 2013 land use/ cover classification layers. 

 

Table 5a shows that between 1991 and 2001, water body 

has the highest probability of 92.37% to remain as water 

body in 2001, whereas agricultural land, built-up, dense 

vegetation, wetland, and barren land had (89.48%), 

(78.29%), (12.68%), (0.6%) and (10.06%) respectively to 

remain unchanged. Barren land will not change to dense 

vegetation from 2013-2020. Whereas, dense vegetation 

has a high probability of converting to agricultural land 

with 93.13% probability of change. See table 5b. Table 5c. 

Shows that the probability of change from wetland to 

wetland is (10.78%) from 2013-2020, while the 

probability of future change of wetland to agricultural land 

is (68.28%). From built -up to retain its state is (55.48%) 

while built-up to change to agricultural land is (42.53%).  

In order to ensure the reliability and/or representativeness 

of the projected LULC of 2030, the predicted LULC of 

2020, and the actual LULC of 2020 were compared using 

the validation tool in TerrSet. The kappa statistics result 

reveals that Kappa for no information (Kno: 0.8593), 

Kappa for location (Klocation: 0.8698) and Kappa for 

standard (Kstandard: 0.7710) were estimated. This 

indicated that both the actual and predicted LULC are 

moderately highly in agreement with the predicted LULC 

(Table 6). This level of agreement is acceptable. This 

reveals that the CA_Markov model is capable of predicting 

the future LULC patterns successfully and correctly 

 

Agricultural land and Barren land in the projection 

decreased between 2020 and 2030 (Table 7a). From the 

projected differences from the years (2020 – 2030), in 

Table 7a, the decrease of 41.04km2 in Agricultural Land 

and 11.47km2 in Barren Land; produced an increase in 

Built up, Dense vegetation, Waterbody and Wetland 

increased by 17.77km2, 24.65km2, 6.37km2 and 3.74km2 

respectively. The spatial view is shown in Figure 11. 

 

 

Table 5a. Transition probability matrix for land cover maps from 1991–2001 

Changing from: Probability of changing by 2001 to: 

1991 Agricultural 

land 

Barren 

land 

Built up Dense 

vegetation 

Water 

body 

Wetland 

Agricultural land 0.8948 0.0045 0.0218 0.0640 0.0053 0.0097 

Barren land 0.0552 0.1006 0.0311 0.0014 0.8106 0.0011 

Built up 0.1831 0.0039 0.7829 0.0018 0.0271 0.0012 

Dense vegetation 0.7220 0.0247 0.0029 0.1268 0.0024 0.0082 

Water body 0.0109 0.0461 0.0138 0 0.9237 0.014 

Wetland 0.7220 0.0600 0.0291 0.0269 0.1330 0.0600 

 

Table 5b. Transition probability matrix for land cover maps from 2001–2013 

Changing 

from: 

Probability of changing by 2013 to: 

2001 Agricultural 

land 

Barren 

land 

Built up Dense 

vegetation 

Water 

body 

Wetland 

Agricultural 

land 

0.9437 0.0001 0.0187 0.0313 0.0006 0.0055 

Barren land 0.6506 0.1663 0.0068 0 0.1121 0.1663 

Built up 0.1876 0.0043 0.8004 0 0.0271 0 

Dense 

vegetation 

0.7688 0.0247 0 0.2312 0 0 

Water body 0 0.2270 0.0049 0 0.7386 0.0296 

Wetland 0.7209 0 0.0024 0 0.0053 0.2714 

 

 Table 5c. Transition probability matrix for land cover maps from 2013–2020 

Changing 

from: 
Probability of changing by 2020 to: 

2013 
Agricultural 

land 

Barren 

land 
Built up 

Dense 

vegetation 

Water 

body 
Wetland 

Agricultural 

land 
0.9313 0.0123 0.0385 0.0038 0.0034 0.0106 

Barren land 0.0834 0.4295 0.0739 0.0004 0.4080 0.0047 

Built up 0.4253 0.0081 0.5548 0.0006 0.0081 0.0031 

Dense 

vegetation 
0.9564 0.0048 0.0126 0.0171 0 0.0088 

Water body 0.0444 0.2280 0.0251 0.0001 0.6990 0.0033 

Wetland 0.6828 0.0572 0.0182 0.0199 0.1142 0.1078 
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Table 6. Validation of the predicted LULC 

CLASS 2020 Actual 2020 Projected 

Agricultural land 729.43 687.71 

Barren land 17.55 8.18 

Built up 46.84 34.55 

Dense vegetation 6.32 54.16 

Water body 23.36 35.12 

Wetland 10.11 13.91 

Total 833.61 833.63 

. 

Table 7a. Difference in land cover distribution for 2020 and 2030 projected. 

 2020 actual 

(Sq km) 

2030 projected 

(Sq km) 
Difference 

Agricultural land 729.43 688.39 -41.04 

Barren land 17.55 6.09 -11.47 

Built up 46.84 64.62 17.77 

Dense vegetation 6.32 30.97 24.65 

Water body 23.36 29.73 6.37 

Wetland 10.11 13.85 3.74 

 833.61 833.63  

 

Table 7b. Correlation Significant at the 0.05 & 0.01 levels (2-tailed). 

 

POP 

(populati

on) 

WB 

(Water 

Body) 

BU 

(Built 

Up) 

AG 

(Agric  

land) 

DV 

(Dense 

Vegn) 

WL 

 (wet 

land) 

BL 

(Barren 

land) 

POP Pearson Correlation 1 -.599* .976** .980** -.991** -.485 .705** 

Sig. (2-tailed)  .014 .000 .000 .000 .057 .002 

N 16 16 16 16 16 16 16 

WB Pearson Correlation -.599* 1 -.444 -.582* .560* -.226 -.654** 

Sig. (2-tailed) .014  .085 .018 .024 .400 .006 

N 16 16 16 16 16 16 16 

BU Pearson Correlation .976** -.444 1 .983** -.963** -.665** .552* 

Sig. (2-tailed) .000 .085  .000 .000 .005 .027 

N 16 16 16 16 16 16 16 

AG Pearson Correlation .980** -.582* .983** 1 -.956** -.596* .562* 

Sig. (2-tailed) .000 .018 .000  .000 .015 .024 

N 16 16 16 16 16 16 16 

DV Pearson Correlation -.991** .560* -.963** -.956** 1 .460 -.736** 

Sig. (2-tailed) .000 .024 .000 .000  .073 .001 

N 16 16 16 16 16 16 16 

WL Pearson Correlation -.485 -.226 -.665** -.596* .460 1 .225 

Sig. (2-tailed) .057 .400 .005 .015 .073  .402 

N 16 16 16 16 16 16 16 

BL Pearson Correlation .705** -.654** .552* .562* -.736** .225 1 

Sig. (2-tailed) .002 .006 .027 .024 .001 .402  

N 16 16 16 16 16 16 16 

*. Correlation is significant at the 0.05 level (2-tailed). 

**. Correlation is significant at the 0.01 level (2-tailed). 
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Figure 11. Makurdi LULC distribution for 2030 projection 

 

3.4 Correlation between population and land use/land 

cover Hypothesis test 

H1 = There is a significant relationship between 

population and landuse/land cover change 

 

H0 = There is no significant relationship between 

population and landuse/land cover change 

 

In Table 7 Pearson’s product correlation of population and 

water body revealed a strong negative correlation with 

r(14)= -.599, p = .014. This explains that population 

increase does not affect water body. 

 

Population and built up area shows a strong positive 

correlation with r(14)= .976, p = .000.This explains that as 

population increase, the built up area will also increase.  

 

Population and agricultural land shows a strong positive 

correlation with r(14)= .980, p = .000. This explains that 

as population increase, other classes like Dense vegetation 

and wetland would contribute to agricultural land increase. 

 

Population and dense vegetation shows a strong negative 

correlation with r(14)= -.991, p = .000. 

 

Population and wetland shows a moderate negative 

correlation with r(14)= -.485, p = .057. 

 

Population and barren land shows a strong positive 

correlation with r(14)= .705, p = .002. 

 

4. Conclusions and Recommendations 

 

The use of GIS techniques and remote sensing dataset with 

statistical calculations has proved significant in 

understanding the trend of land use/land change in 

Makurdi local government area of Nigeria. This research 

has established the usefulness of spatial and temporal 

analysis approach in detecting land use/land change and 

evaluating the extent of urban (natural and social 

environment between 1991 and 2020 using remotely 

sensed images and GIS technology) growth without 

depending on the rigorous survey techniques. 

 

It is evident in the study that the social environment- built 

up area, barren land and agricultural land have expanded 

by 37.10km2, 381.00% gain, 5.24km2, 42.54% gain and 

25.96km2, 3.69% gain respectively. The increase in human 

population attracted infrastructural development and 

expansion of housing estate, which consequently impacted 

negative influence on the natural environment. The LULC 

projection for 2030 reveals further urban expansion and 

decrease in agricultural land. The natural environment 

shows and increases in dense vegetation, water body and 

wetland. 

 

Correlation analysis conducted between population and 

land use land cover classes revealed that agricultural land, 

built-up area, and barren land has a strong positive 

correlation with r= .980, .976 and .705 respectively. This 

explains that as population increase, the land use land 

cover also increases. 

 

5. Summary 

 

Table 4 data and the Figure 9 showed the rise and fall trend 

in the change detection between 1991 – 2020 in % change 

of sequence: 0.07, 2.77, 0.83 amounting to a cumulative 

change of 3.69%  from 1991 – 2020. From the trend shown 

by the LULC for Agricultural land projection for 2030, one 

could notice or expect a decline change by 2030 (Figure 

9).  

 

Transition probability matrix sequence for land cover 

maps for Agricultural land  from 1991–2020 similarly 

followed the trend above with probability sequence of: 

0.8948, 0.9437, 0.9313. 

 

The Transition probability matrix co-correlation values in 

column I of Tables 5(a-c) shows the positive possible 

contributions of Dense vegetation   and wetland to 

Agricultural land in the future. (Probabilities of Dense 

vegetation and wetland are all higher than 0.60 in each 

Transition probability matrix.). 

 

The predicted LULC of 2020, and the actual LULC of 

2020 were compared using the validation tool (model) in 

TerrSet, in order to ensure the reliability and/or 

representativeness of the projected LULC of 2030.  The 
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kappa statistics result reveals the estimated Kappa values 

for the following: Kappa for no information (Kno: 0.8593), 

Kappa for location (Klocation: 0.8698) and Kappa for 

standard (Kstandard: 0.7710). These indicated that both 

the actual and predicted LULC for 2020 are moderately 

highly in agreement with the predicted LULC (Table 6). 

From Table 7a which gives the difference in land cover 

distribution for 2020 and 2030 projection, Agricultural 

land and Barren land in the projection were seen to 

decreased between 2020 and 2030 (Table 7a). 

 

From Table 7b, water body, wetland and dense vegetation 

all have high negative co-correlation probability values, 

giving up their space to accommodate enough agricultural 

land for the increasing population. This can be seen in the 

co-correlation values, with population as the main variable 

(Row 1, Table 7b). 

 

This study did not consider various socio-economic factors 

in the simulation of LULC change. It is therefore 

recommended that further study should employ 

biophysical, socio-economic and policy-related factors in 

a simulation of future land cover changes in the study area 

which could guide more informed decision making. 
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